Manifesto for Clean Ocean

Jesse Ausubel served as lead author for the Manifesto of the Clean Ocean International Expert Group of the UN Decade for Ocean Science for Sustainable Development which presents its short list of activities and goals, and a strategy to reach them, at the three-day online conference on achieving a clean ocean 17-19 November. A Press Release is here.

Coverage highlights:

Agencia EFE, via Infobae, Argentina  Expertos piden reducir hasta un 90 % los desechos marinos antes de 2030 https://www.infobae.com/america/agencias/2021/11/17/expertos-piden-reducir-hasta-un-90-los-desechos-marinos-antes-de-2030/

Newsbreak, United States A Clean Ocean by 2030: UN Experts’ “Clean Ocean Manifesto” https://www.newsbreak.com/news/2436864685283/a-clean-ocean-by-2030-un-experts-clean-ocean-manifesto

SciTech Daily A Clean Ocean by 2030: UN Experts’ “Clean Ocean Manifesto” https://scitechdaily.com/a-clean-ocean-by-2030-un-experts-clean-ocean-manifesto/

Podcast, Germany #4: Die Zukunft der Meere – mit Angelika Brandt https://www.podcast.de/episode/587607889/4-die-zukunft-der-meere-mit-angelika-brandt

Earth.com, United States Steps needed to achieve a clean ocean by 2030 https://www.earth.com/news/steps-needed-to-achieve-a-clean-ocean-by-2030/

Envirotec A clean ocean by 2030: UN panel charts “the most direct course”

Reducing marine debris by 2030: UN panel  Indo Asian News Service, India (via ProKerala.com, potential reach 11,332,681, and 22 other news sites)

Achieving Clean Oceans by 2030: The “Clean Ocean Declaration” of UN Experts
(CN Beta), Mainland China (2,587,026) 

Mark and Jesse give NOAA ‘Omics seminar on “Fishing for DNA”

Thanks to Tracy Gill and Katharine Egan, Mark Stoeckle and Jesse Ausubel gave a NOAA-wide “Omics” seminar. 29 October 2021. Title and abstract are below.  View the recording of the webinar via Adobe Connect, here: https://noaabroadcast.adobeconnect.com/pnnos0mcsh3z/ Thanks to the attendees for lotss of great questions and the lively to-and-fro in the Chat Box.

Title: Fishing for DNA: how much water to catch and other questions

Abstract: Measuring quantities of eDNA is fast becoming a preferred method of learning the presence and abundance of fish and other aquatic species. But how much water need one filter and how much DNA need one process to obtain a reasonably complete and reproducible answer? Tests of an eDNA metabarcoding protocol for marine bony fish show more water, more species of fish up to levels tested. Amplifying decreasing amounts of extracted DNA yields progressively fewer species. Species represented by more copies (reads) of their DNA are detected more reproducibly and with less variation than lower-read species. Findings are consistent with Poisson distribution of rarer eDNA. We also vary PCR cycles, sequencing depth, primer concentrations, and primers. Our findings have multiple practical implications, including for survey strategies for both common and rare species, and identify some limits of knowledge and research directions for aquatic eDNA science.

NOAA Science Seminar page

NOAA ‘Omics Website

Mark Stoeckle looks at a glass of water

PHE’s Mark Stoeckle shared our work on marine eDNA at Parsons School of Design, New School University on October 22, 2021. The online series invites artists and scientists to share perspectives on what they see when they look at a glass of water. 

LOOKING AT WATER: Conversations with artists and scientists
Observational Practices Lab @ Parsons
The New School University, New York City

Podcast with Jesse Ausubel

Jesse reflects on decarbonization, dematerialization, land-sparing, industrial ecology, industrialization of the oceans, biological traces of fishes and of Leonardo Da Vinci, and the Seven Deadly Sins in an 83″ podcast with Robert Bryce, author of Smaller Faster Lighter Denser Cheaper: and A Question of Power: Electricity and the Wealth of Nations.

The Podcast is also on YouTube where you get to see who sings Take Me Out to the Ballgame.

eDNA book chapter by Alan Curry and Jesse Ausubel

We post the book chapter by Alan Curry and Jesse H. Ausubel, Biological information for the new blue economy and the emerging role of eDNA, in the comprehensive new book by Liesl Hotaling and Richard W. Spinrad (eds), Preparing a Workforce for the New Blue Economy: People, Products, and Policies Elsevier, 2021.  Rick is now the Administrator of the National Oceanic and Atmospheric Administration.

A short version of the chapter appeared on 1 March in the magazine Maritime Executive as Biological information for the new blue economy and the emerging role of eDNA.

PHE Analysis of Moore’s Law published

PHE affiliate David Burg and Jesse Ausubel co-authored a paper published in PLOS ONE, Moore’s Law revisited through Intel chip density. Summarized here, the paper uses our LogletLab software to analyze the evolution of transistor density in state-of-the-art computer chips and how it corresponds to the famous ‘Moore’s Law.’

Coverage occurred in Chinese (TenCent News) and in German.

An earlier paper by Jesse and Nadja Victor used loglets to analyze DRAMs. This work fits with our generic interest in diffusion of technical and social phenomena.

Archive Sewage!

PHE Guest Investigator David Thaler and RU colleague Tom Sakmar publish open access in BMC Infectious Diseases 21, Article #601 (2021) Archiving time series sewage samples as biological records of built environments.”  The idea for the article arose during our 2020 twice-weekly PHE Zooms.  It is rooted in part in Paula Olsiewski’s completed Sloan Foundation program on the Microbiology of the Built Environment, to which David contributed.  It also links to the Leonardo Da Vinci DNA Project, to which both David and Tom belong, and which searches for biological relics from times past and also explores how better to preserve recent traces of DNA and RNA.

Abstract

This commentary encourages the regular archiving of nucleic-acid-stabilized serial samples of wastewaters and/or sewage. Stabilized samples would facilitate retrospective reconstitution of built environments’ biological fluids. Biological time capsules would allow retrospective searches for nucleic acids from viruses such as SARS-CoV-2. Current resources for testing need not be diverted if samples are saved in case they become important in the future. Systematic storage would facilitate investigation into the origin and prevalence of viruses and other agents. Comparison of prevalence data from individual and clinical samplings with community wastewater would allow valuable comparison, contrast and correlation among different testing modalities. Current interest is focused on SARS-CoV-2, but archived samples could become valuable in many contexts including surveys for other infectious and chemical agents whose identity is not currently known. Archived time series of wastewater will take their place alongside other biological repositories and records including those from medical facilities, museums, eDNA, living cell and tissue collections. Together these will prove invaluable records of the evolving Anthropocene.

PHE student earns 1st place in science fair

Ossining NY high school sophomore Samara Davis, with guidance from PHE’s Mark Stoeckle, earned 1st place in the Somers/Westlake Science Fair for her project Environmental DNA Analysis to Determine Population Characteristics of Elusive Ephemeral Pool-Breeding Mole Salamanders, in Relation to the Effects of Climate Change. Congratulations to Samara! Thanks, Mark!