AI & Energy foreseen in 2019

In 2019 the CEO of the electric company AEP asked Jesse to address his leadership. Jesse’s talk on Climate and Power included the following prescient words:

A more fascinating and important question is how IT and AI will alter demand.  Siri and Alexa are hungry goddesses.  I mentioned illuminated skylines of cities but consider that a square foot of a data center guzzles more than 100 times the electricity of a square foot of a skyscraper.  More than 1500 skyscrapers of more than 40 stories now define the world’s cities, but the population of enterprise-class date centers now exceeds 5000.  The Switch Corporation’s Citadel data center in Northern Nevada will be 7.2 m square feet, 0.25 square miles, and more than twice the area of the world’s largest office building, the Burj al Khalifa in Dubai.  It will consume 650 MW around the clock.  In round numbers, one million square feet of a new data center demand about 100 MW to live, a density of about 1000 watts per square meter.  The world’s most powerful computer, the Summit Supercomputer in Oak Ridge, demands per square foot about 20 times a conventional data center.  While efficiency gains continuously, the cloud is nevertheless a glowing cloud of electrons.

Connecting the clouds and all the devices that rely on the clouds also uses a lot of electricity.  Per unit of data transported, wireless systems use about ten times the juice of a wired system.  Each smart phone finally uses about the same electricity as a high-efficiency household refrigerator.  The global population of smart phones may pass five billion in 2019.  Meanwhile, Amazon has already sold an additional 100 million digital assistants such as Alexa.  We are creating a world with hundreds or thousands of radios per person.  The system now operates at 4G, which involves about 20 base stations per square km, globally about four million cell towers.  Present information networking uses about 200-300 TW hours per year, about $20 billion worth. 

5G, one hundred times faster and needed for high resolution streaming, virtual reality, and autonomous devices, may employ as many as 2000 base stations per sq km, and the Global Small Cell Forum of the telecom industry anticipates for 2025 some 70 million base stations and networking demand for $90 bn worth of electricity.   All this will come before autonomous vehicles and indeed is the prerequisite for the sensors and AI that will make autonomy safe and effective.

Whether or not the autonomous vehicles (AVs) use batteries or hydrogen for propulsion, they will use electricity to process their zettabytes and yottabytes of data.  In effect each AV will be a high-level server.  A fully connected car is expected to generate 25 GB of data per hour.  If the car is used 2 hours each day, 60 such cars would generate a petabyte in a year, 60,000 cars an exabyte, and 60,000,000 cars a zettabyte.  The present global annual market for servers is about 10 million units.  Motor vehicle sales globally are an order of magnitude larger, about 100 million.  No wonder software and hardware companies now read Car and Driver.  Powering a global stock of one billion servers that also happen to be autos will be a good business, even apart from propulsion.  IT can drive a new wave of global electrification, including for mobility.  Keep an eye on energy use patterns in Northern Virginia, which hosts the world’s largest concentration of large data centers.

DNA of New York City’s East River

Mark Y. Stoeckle and Jesse H. Ausubel

Animals shed environmental DNA (eDNA) into the environment. Sources include cells sloughed from body surfaces, body wastes, and tissue remnants following predation, death, or injury.  eDNA is a bit like dandruff.  DNA of course consists of long strands of four chemical compounds: cytosine (C), adenine (A), guanine (G), and thymine (T). Researchers use strands of about 100 “letters” from variable parts of the genome, like a long telephone number, to identify the species of animal from which the DNA comes. Acidity, heat, and light can speed eDNA degradation, and bacteria eat eDNA. A rule of thumb is that eDNA sufficient for reliable identification lasts about 24 hours and thus gives a good current portrait of life in a water body.

As seen in these 5 slides, the PHE’s Mark Stoeckle regularly collects a half liter of water from the East River adjacent to the Rockefeller campus (slide 1) with a bucket on a string, filters the water, extracts the DNA from the sediment on the filter using special chemicals called primers to grab only the DNA that came from vertebrates, sequences these pieces of eDNA, and matches the sequences against genetic libraries. The number of copies for each species corresponds well to the recent abundance of that animal in the East River.

Our vertebrate eDNA studies show that that the East River abounds in fishes (slide 2), with tautog most common but also herring, bass, and eel.  The presence of water from sewage treatment plants and rains that wash city streets also brings DNA of urban wildlife into the East River.  A cup of water from the East River reports the abundance of rats, pigeons, dogs, and cats (slide 3).  It also reports the presence in the River or nearby of additional wildlife ranging from deer and beaver to seal and dolphin (slide 4).  Finally, the eDNA in the East River neatly tracks the diet of humans of New York (slide 5).  The fractions of aquatic eDNA of commonly consumed meats such as chicken and cow match nicely with national data on meat consumption.  An exception is sea bass (branzino), widely served in New York City restaurants and thus common in East River water samples but a tiny proportion of the national fish diet.

eDNA revolutionizes the ability for people to know, affordably, what animals live in or use the waters near them. eDNA will be a routine component of fish stock assessment, detection of invasive species, and monitoring effects of coastal storms and climate change.  Genomics enables a cup of water to tell the natural history of the East River.

Passing of Cesare Marchetti

Cesare Marchetti passed away this morning in Tuscany just short of his 96th birthday.  After meeting Cesare in 1978, Jesse Ausubel became fascinated with Cesare’s ideas about the importance and ubiquity of processes of growth and diffusion captured often in simple form by Lotka-Volterra equations and subsequently coded in our Loglet Lab software.  In the early 1980s Jesse began assisting Cesare on some projects and subsequently worked together on subjects ranging from electricity to travel to human populations and empires (see below).  And of course Leonardo Da Vinci.

Cesare is best known for Marchetti’s Constant that posits that the human time budget for travel is a little above one hour per day, since ever and everywhere, because anthropologically rooted in the dangers homo sapiens faces when outside a protected environment.

Cesare was one of the inventors of geoengineering. His most cited paper is On geoengineering and the CO2 problem (1977).

Around 1970 he was also one of the inventors of the hydrogen economy as described in this 1973 paper: Hydrogen and energy.

A bibliography with links to many of Cesare’s papers from 1952 to 2007 is here.  A second list of publications is here.

Cesare’s explorations of Leonardo are here.

Our group at The Rockefeller University always greatly enjoyed hosting Cesare in New York City, and he reciprocated with marvelous hospitality in Monteloro.

Our joint efforts included:

C Marchetti, JH Ausubel. Quantitative Dynamics of Human Empires [Color Booklet Version, 52 pages].  Adapted from Marchetti and Ausubel, International Journal of Anthropology 27(1-2):1-62, 2012. 2013

JH Ausubel, C Marchetti. Science, Conquering Child of the Church . 2003 Draft prepared for Next 1000 Years meeting, 9-10 October 2003

C Marchetti, JH Ausubel. The Next 1000 Years. 2003 Discussion paper for April 2003 Rockefeller U workshop

JH Ausubel, C Marchetti. The Evolution of Transport. The Industrial Physicist 7 (2): 20–24, 2001

JH Ausubel, C Marchetti, PS Meyer. Toward Green Mobility: The Evolution of Transport European Review 6 (2): 143–162, 1998

JH Ausubel, C Marchetti. Elektron: Electrical Systems in Retrospect and Prospect Pp. 110–134 in Technological Trajectories and the Human Environment, J.H. Ausubel and H.D. Langford, (eds.). Washington, DC: National Academy Press, 1997 Also appeared in Daedalus 125(3):139-169, Summer 1996.

C Marchetti, PS Meyer, JH Ausubel. Human Population Dynamics Revisited with the Logistic Model: How Much Can Be Modeled and Predicted? Pp. 1–30 in Technological Forecasting and Social Change vol. 53, 1996.

Requiescat in pace.

Video of Jesse’s Nierenberg Prize lecture on “Peak Human?”

In this 54″ video made 13 October, 2022 Jesse Ausubel, awarded the 2022 Nierenberg Prize for Science in the Public Interest, discusses whether the human species can continue to improve—much like cars, computers, or other technology—or whether our species has reached its peak.