The Barcode Blog

A mostly scientific blog about short DNA sequences for species identification and discovery. I encourage your commentary. -- Mark Stoeckle

Subscribe to this blog

Sign up for email notifications

How many plant species are there? Facing success, some taxonomists falter

In Nature 13 april 2006Gardens in full bloom” by Emma Marris highlights the increasing importance of botanical gardens as centers of molecular research. One scientific goal is to compile a working list of known plant species. According to Nature, “plans for the ultimate database inevitably lead to talk of DNA barcoding. If species-specific differences in defined DNA sequences were matched with a species name in some kind of database, an untrained person could use a sequence or a DNA-chip to read the barcode in a botanical sample, send it to the database, and get back a name and all other necessary taxonomic data….Apart from its undoubted geeky appeal, such a technology would in principle save a lot of time and drudgery. Carrying out identifications for colleagues at home and round the world is time consuming and uncompensated. The use of barcoding would free up people to do their own research.”

But Peter Raven, Missouri Botanical garden, is cautious about such a scheme. He worries about how much time and effort it would take and asks “what would one do with barcodes for the 13,000 or so moss species?”

Raven’s question is like a cosmologist asking “why map the distribution of galaxies?” There is likely no way to understand the origins and patterning of biodiversity other than counting species and mapping their distributions. A rapid, simple method for identifying specimens such as DNA barcoding can make this possible. Studying a species-rich group of early terrestrial colonizers such as mosses, which live in some of the coldest and dryest environments as well as in the tropics, and provide habitats for a variety of invertebrates, might be a good place to start.

https://bryophytes.plant.siu.edu/grimmia.htmlDNA analysis can also help identify new moss species. In “Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata“, Fernandez et al describe 2 cryptic species with overlapping geographic distributions. Their samples were collected only in California, so a world survey might reveal many more hidden species. The authors conclude “the results emphasize the need to make molecular characterization of species a standard part of ecological analyses of populations and communities”.

This entry was posted on Monday, May 8th, 2006 at 10:36 pm and is filed under barcode performance, General, Papers. You can follow any responses to this entry through the RSS 2.0 feed. Both comments and pings are currently closed.

Comments are closed.

Contact: mark.stoeckle@rockefeller.edu

About this site

This web site is an outgrowth of the Taxonomy, DNA, and Barcode of Life meeting held at Banbury Center, Cold Spring Harbor Laboratory, September 9-12, 2003. It is designed and managed by Mark Stoeckle, Perrin Meyer, and Jason Yung at the Program for the Human Environment (PHE) at The Rockefeller University.

About the Program for the Human Environment

The involvement of the Program for the Human Environment in DNA barcoding dates to Jesse Ausubel's attendance in February 2002 at a conference in Nova Scotia organized by the Canadian Center for Marine Biodiversity. At the conference, Paul Hebert presented for the first time his concept of large-scale DNA barcoding for species identification. Impressed by the potential for this technology to address difficult challenges in the Census of Marine Life, Jesse agreed with Paul on encouraging a conference to explore the contribution taxonomy and DNA could make to the Census as well as other large-scale terrestrial efforts. In his capacity as a Program Director of the Sloan Foundation, Jesse turned to the Banbury Conference Center of Cold Spring Harbor Laboratory, whose leader Jan Witkowski prepared a strong proposal to explore both the scientific reliability of barcoding and the processes that might bring it to broad application. Concurrently, PHE researcher Mark Stoeckle began to work with the Hebert lab on analytic studies of barcoding in birds. Our involvement in barcoding now takes 3 forms: assisting the organizational development of the Consortium for the Barcode of Life and the Barcode of Life Initiative; contributing to the scientific development of the field, especially by studies in birds, and contributing to public understanding of the science and technology of barcoding and its applications through improved visualization techniques and preparation of brochures and other broadly accessible means, including this website. While the Sloan Foundation continues to support CBOL through a grant to the Smithsonian Institution, it does not provide financial support for barcoding research itself or support to the PHE for its research in this field.