The Barcode Blog

A mostly scientific blog about short DNA sequences for species identification and discovery. I encourage your commentary. -- Mark Stoeckle

Subscribe to this blog

Sign up for email notifications

Selective sweeps limit mitochondrial diversity in animals

An exciting paper in Science 28 April 2006 “Population size does not influence mitochondrial genetic diversity in animals” by Eric Bazin, Sylvain Glemin, and Nicolas Galtier from Universite Montpellier, France, calls into question current thinking in population genetics. The authors looked at intraspecific variation in nuclear and mitochondrial DNA using sequence data collected from public databases into Polymorphix database. Contrary to expectations from population genetic theory, there was “no correlation between mtDNA polymorphism and species abundance”. Analysis of non-synonymous (amino acid changing) and synonymous (silent) changes indicated that reduced mitochondrial diversity within species reflects positive selection. They conclude “mtDNA appears to be anything but a neutral marker and probably undergoes frequent adaptive evolution… mtDNA diversity will in many instances, reflect the time since the last event of selective sweep, rather than population history and demography.” Taken together, these findings help explain the general observation of constrained intraspecific mitochondrial variation in animals, even in organisms with enormous population sizes. Recurrent selective sweeps are natural tests of species boundaries and help explain why mtDNA genealogies generally capture the biological discontinuities recognized by taxonomists as species (Avise and Walker PNAS 96:992, 1999), in short, why DNA barcoding works! It is expected that large data sets generated by DNA barcoding surveys will help refine this analysis and identify possible ecological or biological correlates, providing insight into what drives selective sweeps. I close with a question: if a species is morphologically and ecologically stable, does it nonetheless undergo repeated selective sweeps?

https://www.fishesnpets.net/explore/explore/ChangiBeach05012002/changipoint31.jpg

150 My of selective sweeps?

This entry was posted on Sunday, May 7th, 2006 at 4:55 pm and is filed under barcode performance, General, Papers. You can follow any responses to this entry through the RSS 2.0 feed. Both comments and pings are currently closed.

One Response to “Selective sweeps limit mitochondrial diversity in animals”

  1. The Barcode of Life blog » Blog Archive » Pieces of a puzzle Says:

    […] This table-napkin analysis leads me to selective sweeps as pruning mitochondrial diversity within species (eg Bazin et al 2006 Science 312:570, see also editorial and reader commentary). If selective sweeps restrict mitochondrial diversity, then the question becomes what is being selected for? Environmental adaptation seems unlikely, as restricted variation is seen in species that are as best one can tell morphologically and ecologically unchanged (eg see earlier posts on horseshoe crabs, salamanders). It might be there is little tolerance for genetic variation due to interactions of mitochondrial proteins with other cellular components, but if so there should be species with genetic stasis in mitochondrial DNA, just as there are many species with apparent morphologic stasis. However, in simple distance trees most species show roughly similar genetic distances.  […]

Contact: mark.stoeckle@rockefeller.edu

About this site

This web site is an outgrowth of the Taxonomy, DNA, and Barcode of Life meeting held at Banbury Center, Cold Spring Harbor Laboratory, September 9-12, 2003. It is designed and managed by Mark Stoeckle, Perrin Meyer, and Jason Yung at the Program for the Human Environment (PHE) at The Rockefeller University.

About the Program for the Human Environment

The involvement of the Program for the Human Environment in DNA barcoding dates to Jesse Ausubel's attendance in February 2002 at a conference in Nova Scotia organized by the Canadian Center for Marine Biodiversity. At the conference, Paul Hebert presented for the first time his concept of large-scale DNA barcoding for species identification. Impressed by the potential for this technology to address difficult challenges in the Census of Marine Life, Jesse agreed with Paul on encouraging a conference to explore the contribution taxonomy and DNA could make to the Census as well as other large-scale terrestrial efforts. In his capacity as a Program Director of the Sloan Foundation, Jesse turned to the Banbury Conference Center of Cold Spring Harbor Laboratory, whose leader Jan Witkowski prepared a strong proposal to explore both the scientific reliability of barcoding and the processes that might bring it to broad application. Concurrently, PHE researcher Mark Stoeckle began to work with the Hebert lab on analytic studies of barcoding in birds. Our involvement in barcoding now takes 3 forms: assisting the organizational development of the Consortium for the Barcode of Life and the Barcode of Life Initiative; contributing to the scientific development of the field, especially by studies in birds, and contributing to public understanding of the science and technology of barcoding and its applications through improved visualization techniques and preparation of brochures and other broadly accessible means, including this website. While the Sloan Foundation continues to support CBOL through a grant to the Smithsonian Institution, it does not provide financial support for barcoding research itself or support to the PHE for its research in this field.