I envision a large, prosperous economy that treads lightly and emits little or nothing.
The first decade of my career I carried briefcases for William A. Nierenberg (NAE), Robert M. White (NAE), and other leaders in formulating such major research programs as the World Climate Program and the International Geosphere-Biosphere Program. An obscure fact is that in 1983 I was the scribe of Toward an International Geosphere-Biosphere Program: A Study of Global Change, the National Research Council (NRC) report that articulated and named the Global Change venture, one of the largest environmental programs of recent times. Working for the National Academies of Sciences and Engineering, I saw major efforts conceived, including the Human Genome Project, International Decade of Natural Disaster Reduction, and Superconducting SuperCollider. I learned what grand programs can and cannot do, how they are born, and what they cost. I learned that the sealing wax and string, the technical means to do research, open the new niches that we successfully explore.
Spurred by an invitation from the San Diego Science & Technology Council and hoping to rally my colleagues to glory on Earth, I here tell my top five Worthy Ways to spend large amounts of money for research on environment and resources. My top five span the oceans, land, human health, energy, and transport. All demand teams of engineers and scientists. Let’s
count all the fish in the sea;
verify that the extension of humans into the landscape has begun a Great Reversal and anticipate its extent and implications during the next century;
assess national exposure of humans to bad things in the environment;
build 5-gigawatt zero-emission power plants the size of an automobile; and
get magnetically-levitated trains (Maglevs) shooting through evacuated tubes.
These Worthy Ways cohere in the vision of a large, prosperous economy that treads lightly and emits little or nothing.
1. Marine Census
In December 1998 for a week I sailed above the Arctic Circle in the Norwegian Sea, precisely counting herring in the dark. Over the decades of the Cold War, Norwegians honed their submarine acoustics, listening for Soviet vessels motoring out of Murmansk. This technology, integrated with others, makes possible the first-ever reliable worldwide Census of Marine Life. I prefer to say Census of theFishes, conjuring beautiful images to Everyman. But, humanity needs to understand the diversity, distribution, and abundance of squids, jellies, and turtles, too, and so, deferring to accurate colleagues, I call this first Worthy Way the Census of Marine Life. But let me make the case primarily for fishes.
Many of the world’s leading icthyologists gathered at Scripps Institution of Oceanography in La Jolla, California, in March 1997 to consider what is known and knowable about the diversity of marine fishes.[1] The meeting attendees reported how many species are known in each region of the world’s oceans and debated how many might remain undiscovered. Known marine species total about 15,000. The meeting concluded that about 5,000 yet remain undiscovered. I find this prospect of discovering 5,000 fishes a siren call, a call to voyages of discovery in little explored regions of the Indian Ocean, along the deeper reaches of reefs, and in the mid-waters and great depths of the open oceans. The adventures of discovery of Cook, Darwin, and the explorers of Linnaeus’s century are open to our generation, too.
The urgency to cope with changes in abundance of fish amplifies the adventure of discovery. In August 1998 at the Oceanographic Institution in Woods Hole we advanced the concept of the Census at a workshop on the history of fished populations, some 100-200 of the 15-20 thousand species. From history, the assembled experts estimated that fish biomass in intensively exploited fisheries is about 1/10th the level pre-exploitation.[2] That is, the fish in seas where commercial fisherman do their best (or worst) to make a living now weigh only 10% of the fish they sought in those seas a few decades or hundred years ago.
Diverse observations support this estimate. For example, the diaries of early European settlers describe marvelous fish sizes and abundance off New England in the 1600s. From Scotland to Japan, commercial records document enormous catches with simple equipment during many centuries. Even now, when fishers discover and begin fishing new places, they record easy and abundant catches, for example, of orange roughy on Pacific sea mounts. Also scientific surveys of fish stocks indicate fewer and fewer spawning fish, mothers, compared to recruits, their offspring. The ratio of spawners to recruits has fallen to 20% and even 5% of its level when surveys began. A great marine mystery is what has happened to the energy in the ecosystem formerly embodied in the commercial fish.
The two dramatic numbers of the “missing,” the 5000 undiscovered fishes and the lost 90% of stocks, suggest the value of a much better and continuing description of life in the oceans. So, I propose a worldwide Census. The Census would describe and explain the diversity, distribution, and abundance of marine life, especially the upper trophic levels. Preoccupied by possible climatic change and the reservoirs of carbon that influence it, we have tended to assess life in the oceans in gigatons of carbon, neglecting whether the gigatons are in plankton, anchovies, or swordfish. I care what forms the carbon takes.
Three questions encapsulate the purpose of the Census. What did live in the oceans? What does live in the oceans? What will live in the oceans? The three questions mean the program would have three components. The first, probably not large or expensive, would be paleo and reconstruct the history of marine animal populations since human predation became important, say, the past 500 years.
The second and expensive part of the program would answer “What does live in the oceans?” and be observations lasting a few years, perhaps around the year 2005. We would observe the many parts of the oceans where we have so far barely glimpsed the biology, for example, the open oceans and mid-waters, together with strengthening efforts by national fisheries agencies that struggle with meager funds, personnel, and equipment to examine areas near shore where many species of commercial import concentrate.
As a maximalist, I hope to see integration and synchronization of technologies, platforms, and approaches. Acoustics are paramount, because every fish is a submarine, and acousticians can now interpret tiny noises 100 kilometers away. Optics also can detect much. For example, airborne lidars now range far, fast, and perhaps as deep as 50 meters. Lidars can also detect inexpensively if their planes are drones. And least expensive of all, smart and hungry, animals are themselves motivated samplers of their environments, and we know what they sampled if we tag them. The benefits of the technologies soar, if integrated. For example, acoustics, optics, and molecular and chemical methods can combine to identify species reliably from afar.
Answeringthe third question, “What will live in the oceans?” requires the integration and formalization that we call models. So, the Census would also have a component to advance marine ecosystem and other models to use the new data to explain and predict changes in populations and relations among them.
A major outcome of the Census would be an on-line three-dimensional geographical information system which would enable researchers or resource managers anywhere to click on a volume of water and bring up data on living marine resources reported in that area. Additionally, the observational system put in place for scientific purposes could serve as the prototype for a continuing diagnostic system observing living marine resources. A proper worldwide Census might cost a total of $1 billion over ten years. Costly, complicated observational programs prudently begin with pilot projects, to test both techniques and political will.
Not only technology and stressed fisheries but also an international treaty to protect biodiversity make the time ripe for this Worthy Way. Biodiversity now finds itself with many signatories to its Convention, but uncharted national obligations and resources. Acousticians, marine engineers, marine ecologists, taxonomists, statisticians, and others should join their talents to make the Census of Marine Life happen. In fact, some of us, supported by the Alfred P. Sloan Foundation, are trying.[3]
2. The Great Reversal
Humanity’s primitive hunting of the oceans has damaged marine habitats and populations. Fortunately on the land where humanity stands, engineering and science have infused farming and logging, so initiating the Great Reversal. The Great Reversal refers to human contraction in Nature, after millennia of extension. My measure is area, square kilometers or hectares. Simple area is the best single measure of human disturbance of environment.[4]
People transform land by building, logging, and farming.[5] First, let me speak briefly about the spread of the built environment, of “cities” broadly speaking. This includes land not only for roads, shopping centers, and dwellings, but also for lawns, town gardens, and parks. In the USA the covered land per capita ranges from about 2,000 m2 in states where travel is fast, like Nebraska, to less than a third as much in slower, more urban New York. The 30 million Californians, who epitomize sprawl, in fact average 628m2 of developed land each, about the same as New Yorkers.
The transport system and the number of people basically determine covered land. Greater wealth enables people to buy higher speed, and when transit quickens, cities spread. Average wealth and numbers will grow. So, cities will take more land.
What are the areas of land that may be built upon? The USA is a country with fast growing population, expecting about another 100 million people over the next 75 years, when the world is likely to have about 10 billion. At the New York and California rate of 600m2 each, the USA increase would consume only 6 million hectares, about the area of West Virginia or 15% of California. Globally, if everyone builds at the present California rate, 4 billion more people would cover about 240 million hectares, midway in size between Mexico and Argentina, 6 to7 Californias.
By enduring crowding, urbanites spare land for nature. Enduring more crowding, they could spare more. Still, cities will take more land. Can changes in logging and farming offset the urban sprawl?
Forests are cut to clear land for farms and settlements and also for fuel,
lumber, and pulp.[6] In America, from the time of European settlement until 1900 we chopped fervidly and made Paul Bunyan a hero. In the 20th century, however, America’s forested area has remained level, and since 1950 the volume of wood on American timberland has grown 30%. In the same interval, European forests have increased about 25% in volume. In the USA, the intensity of use of wood defined as the wood product consumed per dollar of GDP has declined about 2.5% annually since 1900. In 1998 an average American consumed half the timber for all uses as a counterpart in 1900.
In the USA, likely continuing fall in intensity of use of forest products should more than counter the effects of growing population and affluence, leading to an average annual decline of perhaps 0.5% in the amount of timber harvested for products. A conservative 1.0% annual improvement in forest growth would compound the benefits of steady or falling demand and could shrink the area affected by logging 1.5% annually. Compounded, the 1.5% would shrink the extent of logging by half in 50 years. If one half of this amount occurs by leaving areas now cut uncut, the area spared is 50 million hectares, 1/3rd more than the area of California. Changing technology, taste, and economics create similar timberland patterns in numerous countries. Since 1990 forests have increased in 44 of 46 temperate countries, excepting the Czech Republic and Azerbaijan.
Rising productivity of well-managed forests should comfortably allow 20% or less of today’s forest area of about 3 billion hectares to supply world commercial wood demand in the middle of the 21st century.[7] Unmanaged forests now yield yearly an average of 1-2 cubic meters (m3) of commercially valuable species per hectare. Potential in secondary temperate forests ranges between 5 and 10 m3. Many commercial plantation forests now reliably produce more than 20 m3 year, and experimental plots have yielded over 60 m3.
In poor regions of tropical countries such as Brazil, Indonesia, and Congo, the dominant force stressing forests remains the struggle to subsist. During the last couple of decades, the removal of tropical forests has been estimated at 1% per year. Until overcome by better livelihoods, cheap land, cheaper fuels, superior alternatives to wood in the marketplace, or taboos the one-time conversion of forests to money, cropland or fuel will continue. Nevertheless, global expansion of forests and rising incomes encourage. Indeed, about 165 million hectares once used for crops and pasture have reverted to secondary forest in Latin America alone, an area more than ¾ the size of Mexico, 4 Californias or 1 Alaska.[8]
This brings us to farms. For centuries, farmers expanded cropland faster than population grew, and thus cropland per person rose. Fifty years ago, farmers stopped plowing up more nature per capita, initiating the Great Reversal (Figure 1). Meanwhile, growth in calories in the world’s food supply has continued to outpace population, especially in poor countries. Per hectare, farmers have lifted world grain yields about 2 percent annually since 1960.
Frontiers for agricultural improvement remain wide open, as average practice moves steadily toward the present yield ceiling and the ceiling itself keeps rising. On the same area, the average world farmer consistently grows about 20% of the corn of the top Iowa farmer, and the average Iowa farmer advances in tandem about 30 years behind the yields of his or her most productive neighbor. While an average Iowa corn farmer now grows 8 tons per hectare, top producers grow more than 20 tons compared with a world average for all crops of about 2. On one hectare the most productive farmers now make the calories for a year for 80 people when their grandparents struggled to make the calories for 3.
High and rising yields are today the fruit of precision agriculture. Technology and information help the grower use precise amounts of inputs-fertilizer, pesticides, seed, water-exactly where and when they are needed. Precision agriculture includes grid soil sampling, field mapping, variable rate application, and yield monitoring-tied to global positioning. Precision agriculture is frugal with inputs, like other forms of lean production that now lead world manufacturing.
If during the next 60 to 70 years, the world farmer reaches the average yield of today’s USA corn grower (less than 40% of today’s ceiling), ten billion people eating on average as people now do will need only half of today’s cropland. The land spared exceeds the Amazonia. This sparing will happen if farmers maintain the yearly 2% worldwide growth of grains achieved since 1960. In other words, if innovation and diffusion continue as usual, feeding people will not stress habitat for Nature. Even if the rate of improvement falls to half, an area the size of India, globally, will revert from agriculture to woodland or other uses. A meaty USA diet of 6,000 primary calories/day doubles the difficulty or halves the land spared.
In summary, globally, if an additional 4 billion people pave and otherwise develop land at the present rate of Californians, cities will consume about 240 million hectares. This area appears likely to be offset by land spared from logging in the USA and other countries that now reduce their cutting of forests. The likely added land spared from crops globally over the time it takes to reach 10 billion people suggests a net worldwide return to Nature of lands equal to India or more than 6 Californias.
On land as in the oceans, anecdotes, affection for Nature, and the plight of the poor farmer and logger will impel nations to spend and prohibit. The goal of my second Worthy Way, verifying and forecasting the probable extent of the Great Reversal, is first guiding and then strengthening the actions so they will produce the hoped for conservation and restoration unalloyed by the disillusionment of failure. The distribution of lands spared will greatly affect the chances recreated for flora and fauna.
The research for the Great Reversal includes observations as well as experiments and analyses. In many parts of the world routine aerial surveying of land use confirmed by ground measurements remains far from complete or usefully periodic. Geographers, foresters, agronomists, ecologists, agricultural and civil engineers, and technologists need to agree on definitions, protocols, and priorities for building the world land information system. The long-term behavior and potential of intensively managed forests exemplify the need for experiment and analysis.
International frameworks for studying the Great Reversal exist in the Global Change program and in joint efforts of the World Bank and World Wildlife Fund for forest conservation. These programs hunger for a feasible, attractive technical vision. Excluding costs for satellites, which I believe have anyway already contributed the answers they are likely to contribute to this question, my guess is that for about $100 million we could verify the Great Reversal and forecast its probable extent. The information would chart a new sound and grand strategy for conserving the landscape and the other animals with which we share it.
3. Human Exposure Assessment
My first two Ways to spend have been Worthy because they would deepen our understanding of sea and land and create the context for protecting other life while we feed ourselves. My third Worthy Way to spendconcerns what we humans absorb from the environment. Recall our high fears and outlays for ionizing radiation, pesticides, and asbestos.
Like other animals, we take in water, food, air, and dust. Given our genes, we are what we eat in the broadest sense. Yet, little research chronicles actual human exposures. Exposure estimates often trace back to very indirect measures, such as chimney emissions. And our habits and habitats seem overlooked. Consider where Americans spend 24 hours (Figure 2). One wonders why so much exposure measurement and regulation have concentrated on traffic intersections when we are usually home sleeping. Moreover, exposures even to a single chemical may occur from contact with several media (air, water), via several pathways (hand-to-mouth transfers, food), and through several routes (inhalation, oral, dermal).
To gather information about the magnitude, extent, and causes of human exposures to specific pollutants and measure the total “dose” of selected pollutants that Americans receive, in 1994 the Environmental Protection Agency (EPA) launched a National Human Exposure Assessment Survey (NHEXAS).[9] Its ultimate goal is documenting the status and trends of national exposure to risky chemicals both to improve risk assessments and to evaluate whether risk management helps.
For pilot studies, EPA chose metals, volatile organic compounds, and pesticides and polynuclear aromatics, because of their toxicity, prevalence in the environment, and relative risk to humans—at least as EPA and perhaps the public believe. I never forget Bruce Ames’ work showing that 99.99% of the pesticides we ingest are natural.[10] In any case, EPA’s chosen classes of compounds and the expected combination of chemicals, exposure media, and routes of exposure would demonstrate and challenge currently available analytical techniques.
Phase I, demonstration and scoping projects, may already be the most ambitious study of total human exposure to multiple chemicals on a community and regional scale. It has focused on exposure of people to environmental pollutants during their daily lives. Survey participants wore “personal exposure monitors” to sample their microenvironments. Meanwhile, NHEXAS researchers measured levels of chemicals to which participants were exposed in their air, foods, water and other beverages, and in the soil and dust around their homes. They also measured chemicals or their metabolites in blood and urine provided by participants. Finally, participants completed time-activity questionnaires and food diaries to help identify sources of exposure to chemicals and to characterize major activity patterns and conditions of the home environment. Several hundred Arizonans, several hundred Midwesterners, and 60 Marylanders participated. Sample collection began in 1995 and went to early 1998. Publications are expected soon and databases in 2000.
The main purpose of the pilot study is to find the best way to conduct the full national human exposure assessment survey. Implementing representative monitoring projects to estimate the magnitude, duration, frequency, and the spatial and temporal distribution of human exposures for the USA will be a large task, involving chemists, biologists, statisticians, and survey researchers. I hope clever engineers can lighten, integrate, and automate the measurement and speed reporting.
I learned of NHEXAS while serving for three years on the executive committee of EPA’s Science Advisory Board. NHEXAS was an unpolished diamond in a lackluster research portfolio. Neither EPA’s leadership nor the Congress appreciated the Survey, so it has proceeded slowly and barely. I guess the cost to perform NHEXAS right might be $200 million over 6-7 years. I believe the USA should make a strong commitment to it, though not exactly as underway. It needs a less “toxic” bias. A national scientific conference to adjust and advance the concept might be timely.
The eventual outcomes of NHEXAS should include a comprehensive total human exposure database and models that accurately estimate and predict human exposures to environmental chemicals for both single and multiple pathways. The models would link environmental and biological data with information on human activity to estimate total human exposures to various chemicals and combinations and thus contribute to better risk assessments. We can establish proper baselines of normal range of exposure and identify groups likely to be more exposed.
We know surprisingly little about our exposures. For decades researchers have measured and tracked pollutants one at a time, often faddishly. This third Worthy Way can reduce the uncertainty about exposure and indeed make exposure a science. Understanding aggregate exposures, we may find surprisingly powerful levers to reduce ambient bads or increase goods.
4. ZEPPs
One way to finesse the question of exposure, whether for humans or green nature, is with industries that generate zero emissions. A growing gang of us has been promoting the concept of industrial ecology, in which waste tends toward zero, either because materials that would become waste never enter the system, or because one manufacturer’s wastes become food for another in a nutritious industrial food chain, or because the wastes are harmless. For this human, yours truly, I certainly want zero emissions of poisonous elements such as lead and cadmium.
For green nature exposed outdoors, however, the giga-emission is carbon, and I shall exemplify zero emission by tackling the giga-emission with my fourth Worthy Way to spend.
Today industries annually emit about 6 gigatons of carbon to the atmosphere, or a ton per each of the planet’s 6 billion people. The mounting worry is that these and more gigatons likely to be emitted will make a punishing climate for nature exposed outdoors.
Most of the carbon comes, of course, from fuel to energize our economies, and an increasing portion of the energy is in the form of electricity. Since Thomas Edison, the primary energy converted to electricity has grown in two sequential, long S-curves until it is now about 40% of all energy humanity uses. Although electric consumption leveled until recently at the top of its second S-curve, I believe it will maintain an average 2-3% annual growth through the 21st century. In the information era, consumers will surely convert even more of their primary energy to electricity. And, after all, two billion people still have no electricity. A hundred years at 2-3% growth per year would raise the world average per capita electricity consumption of 10 billion or so in the year 2100 only to today’s average USA per capita consumption.
Remembering that my fourth Worthy Way was to eliminate carbon emission, I ask what fuel generates the electricity. The evolving shares of primary energy sources, with more hydrogen per carbon atom, gradually and desirablydecarbonize the energy system from wood and hay to coal to oil to natural gas.[11] Nuclear, probably, or possibly some other non-carbon alternative will eventually close the hydrocarbon fuel era. In the interim, however, can we find technology consistent with the evolution of the energy system to economically and conveniently dispose the carbon from making kilowatts? This is my fourth Worthy Way: Finding a practical means to dispose the carbon from generating electricity consistent with the future context. The Way is what I and my associates call ZEPPs, Zero Emission Power Plants.
The first step on the road to ZEPPs is focusing on natural gas simply because it will be the dominant fuel, providing perhaps 70% of primary energy around the year 2030.[12] Although natural gas is far leaner in carbon than other fossil fuels, when natural gas does provide 70% of primary energy, CO2 emission from it will be about 75% of total CO2 emissions.
A criterion for ZEPPs is working on a big scale. A peak use of, say, 30 x 1012 m3 of natural gas in 2060, corresponds to 2 to 3 times today’s carbon emission to dispose annually. Even in 2020, we could already need to dispose carbon from gas alone equal to half today’s emission from all fuel.
Big total use means big individual ZEPPs because the size of generating plants grows even faster than use. Although the last wave of power station construction reached about 1.5 gigawatts (GW), growth of electricity use for the next 50 years can reasonably raise plant size to about 5 GW (Figure 3). For reference, the New York metropolitan area now draws above 12 GW on a peak summer day.
Plants grow because large is cheap if technology can cope. Crucial for controlling emission, one big plant emits no more than many small plants but emission from one is easier to collect. We cannot solve the carbon question if we need to collect emissions from millions of microturbines.
So far, I’ve specified my way to spend as a search for big ZEPPs fueled by natural gas. But bigger ZEPPs mean transmitting immense power from larger and larger generators through a large steel axis at a speed such as 3,000 revolutions per minute (RPM).
The way around the limits of mechanical power transmission may be shrinking the machinery. Begin with a very high pressure CO2 gas turbine where fuel burns with oxygen. Needed pressure ranges from 40 to 1000 Atm, where CO2 would be recirculated as a liquid. The liquid combustion products would be bled out.
Fortunately for transmitting power, the very high pressures shrink the machinery in a revolutionary way and permit very fast RPMs for the turbine. The generator could then also turn very fast, operating at high frequency, with appropriate power electronics to slow the output to 50 or 60 cycles. People have seen the attraction of higher RPMs for a while. High RPM generators are included in the last version of a gas turbine of the High Temperature Reactor of the General Atomics corporation.
Materials issues lurk and solutions are expensive to test. The envisioned hot temperature of 1500 degrees is what challenges engineers in aviation. Fortunately, Japanese have recently reported a tough, thermally conductive ceramic strong up to 1600o in air.[13] Problems of stress corrosion and cracking will arise.
Although combustion within CO2 does not appear a general problem, some may arise at the high temperatures and pressures. Also no one has yet made burners for such high pressures as we consider. Power electronics to slow the cycles of the alternating current raises big questions. So far, the cost of power electronics exceeds benefit. The largest systems for conversion between alternating and direct current are now 1.5 GW and can handle 50-60 cycles. Conversion costs are about $100 per kilowatt (kW), a big increment to the present $200 per kW for a simple turbine and $300-$400 for a combined cycle generator. Present limits of about 100 hertz are not fast enough to convert 30,000 RPMs to 3,600 RPM. What we envision is beyond the state of the art, but power electronics is still young, meaning expensive and unreliable, and we are thinking of the year 2020 and beyond when this Worthy Way could make it mature, cheap and reliable. Already engineers consider post-silicon power electronics with diamond plasma switches.
The requisite oxygen for the ZEPP, say, 1,000 tons/hr for a 5 GW plant, also exceeds present capacity, about 250 tons/hr by cryoseparation, but could be done. Moreover, the cryogenic plant may introduce a further benefit. The power equipment suppliers tend to think of very large and slow rotating machines for high unit power. The core of the problem is in mechanical resistance of materials. Here we might recur to superconductors that are more “in” with a cryogenic plant nearby.
With a ZEPP fueled by natural gas transmitting immense power at 60 cycles, the next step is sequestering the waste carbon. Because of the high pressure, the waste carbon is, of course, already easily-handled liquid carbon dioxide. In principle aquifers can store CO2 forever if their primary rocks are silicates, which with CO2 become stable carbonates and silica (SiO2). The process is the same as rocks weathering in air. The Dutch and Norwegians have done a lot on CO2 injection in aquifers, and the Norwegians have already started injecting.
Opportunity for storing CO2 will join access to customers and fuel in determining plant locations. Fortunately, access to fuel may become less restrictive. Most natural gas travels far through a few large pipelines, which makes these pipelines the logical sites for generators. The expanding demand will require a larger and wider network of pipelines, opening more sites for ZEPPs.
Another criterion is overall projected plant efficiency. Colleagues at Tokyo Electric Power calculate the efficiency of the envisioned ZEPP could be 70%.
In short, the fourth Worthy Way is a supercompact (1-2 m diameter), superpowerful (potentially 10 GW or double the expected maximum demand), superfast (30,000 RPM) turbine putting out electricity at 60 cycles plus CO2 that can be sequestered. ZEPPs the size of an automobile, attached to gas pipelines, might replace the fleet of carbon emitting non-nuclear monsters now cluttering our landscape.
We propose starting introduction of ZEPPS in 2020, leading to a fleet of 500 5 GW ZEPPs by 2050. This does not seem an impossible feat for a world that built today’s worldwide fleet of some 430 nuclear power plants in about 30 years. Combined with the oceans safely absorbing 2-3 Gt C yearly, ZEPPs, together with another generation of nuclear power plants in various configurations, can stop CO2 increase in the atmosphere near 2050 AD and 450-500 ppm without sacrificing energy consumption.
Research on ZEPPs could occupy legions of academic researchers, and restore an authentic mission to the DOE’s National Laboratories, working on development in conjunction with companies such as General Electric, Air Products, and General Atomics. The fourth Worthy Way to spend merits tens of billions in R&D, because the plants will form a profitable industry worth much more to those who can capture the expertise to design, build, and operate ZEPPs. Like all my Worthy Ways, ZEPPs need champions.
To summarize, we have searched for technologies that handle the separation and sequestration of amounts of carbon matching future fuel use. Like the 747 jumbojets that carry about 80% of passenger kilometers, compact ultrapowerful ZEPPs could be the workhorses of the energy system in the middle of the next century.
5. Maglevs
Cutting emissions and the footprints of farming, logging, and power, we naturally also wonder about transport. Transport now covers Earth with asphalt ribbons and roars through the air leaving contrails that could prove harmful. With cars shifting to fuel cells fed with hydrogen over the next few decades, the air transport system and its jet fuel can become emissive enemy #1. Fortunately the time is right for innovation in mobility, my fifth Worthy Way.
Since 1880, including walking, USA per capita mobility has increased 2.7%/yr and the French about the same. Europeans currently travel at about 35 km per hour and per day, because people travel about 1 hour per day. Of this, Europeans fly only about 20 seconds or 3 km per day. A continuing rise in mobility of 2.7% per year means a doubling in 25 years, and an additional 35 km per day or about 3 minutes on a plane. Three minutes per day equal about one round-trip per month per passenger. Americans already fly 70 seconds daily, so 3 minutes certainly seems plausible for the average European a generation from now. The jetset in business and society already flies a yearly average of 30 minutes per day. However, for the European air system, the projected level requires a 14-fold increase in 25 years, or about 12% per year. The USA would need a 20-fold increase in 50 years. A single route that carries one million passengers per year per direction would require 60 take-offs and landings of jumbojets. The jumbos would need to take off like flocks of birds. Unlikely. We need a basic rethinking of planes and airport logistics.
The history of transport can be seen as a striving to bring extra speed to the progressively expanding level of income within the fixed amount of time we are willing to expose ourselves to travel.[14] According to a rhythmic historical pattern (Figure 4), a new, fast transport mode should enter about 2000. The steam locomotive went commercial in 1824, gasoline engine in 1886, and jet in 1941. In fact, in 1991, the German Railway Central Office gave the magnetic levitation (maglev) system a certificate of operational readiness and a Hamburg-Berlin line is now under construction.[15],[16] The essence of the maglev is that magnets lift the vehicle off the track, thus eliminating friction, and that activation of a linear sequence of magnets propels the vehicle.
Maglevs have many advantages: not only high mean speed but acceleration, precision of control, and absence of noise and vibration. They can be fully passive to forces generated by electrical equipment and need no engine on board. Maglevs also provide the great opportunity for electricity to penetrate transport, the end-use sector from which it has been most successfully excluded.
The induction motors that propel maglevs can produce speeds in excess of 800 km per hour and in low pressure tunnels thousands of km per hr. In fact, electromagnetic linear motors have the capacity to exert pull on a train independent of speed. A traditional electric or internal combustion engine cannot deliver power proportional to speed. In contrast, the new motors allow constant acceleration. Constant acceleration maglevs (CAMs) could accelerate for the first half of the ride and brake for the second and thus offer a very smooth ride with high accelerations.
High speed does entrain problems: aerodynamic and acoustic as well as energetic. In tunnels, high speed requires large cross sections. The neat solution is partially evacuated tubes, which must be straight to accommodate high speeds. Low pressure means a partial vacuum comparable to an altitude of 15 thousand meters. Reduced air pressure helps because above about 100 km per hour the main energy expense to propel a vehicle is air resistance. Low pressure directly reduces resistance and opens the door to high speed with limited energy consumption. Tunnels also solve the problem of landscape disturbance. CAMs operating in evacuated tubes are my fifth Worthy Way.
For a subsurface network of such maglevs, the cost of tunneling will dominate. The Swiss are actually considering a 700 km system.[17] For normal high-speed tunnels, the cross-section ratio of tunnel to train is about 10-1 to handle the shock wave. With a vacuum, however, even CAMs could operate in small tunnels, fitting the size of the train. In either case the high fixed cost of infrastructures will require the system to run where traffic is intense–or huge currents can be created, that is, trunk lines. Because the vehicles will be quite small, they would run very often. In principle, they could fly almost head-to-tail, ten seconds apart.
Initially, maglevs will likely serve groups of airports, a few hundred passengers at a time, every few minutes. They might become profitable at present air tariffs at 50,000 passengers per day. In essence maglevs will be the choice for future Metros, at several scales: urban, possibly suburban, intercity, and continental.
The vision is small vehicles, rushing from point to point. Think of the smart optimizing elevators in new skyscrapers. Alternately, the physical embodiment resembles, conceptually, that of particle accelerators, where “buckets” of potential fields carry bunches of charged particles. Maglevs may come to be seen as spin-offs of the physics of the 1970s and 1980s, as transistors are seen as realizations of the quantum mechanics of the 1920s and 1930s.
With maglevs, the issue is not the distance between stations, but waiting time and mode changes, which must be minimized. Stations need to be numerous and trips personalized, that is, zero stops or perhaps one.
Technically, among several competing designs the side-wall suspension system with null-flux centering, developed in the United States by the Foster-Miller company, seems especially attractive: simple, easy access for repair, and compact.[18] Critically, it allows vertical displacement and therefore switches with no moving parts. Vertical displacement can be precious for stations, where trains would pop up and line up, without pushing other trains around. It also permits a single network, with trains crossing above or below. Alternatively, a hub-and-spoke system might work. This design favors straight tubes and one change.
The suspension system evokes a comparison with air. Magnetic forces achieve low-cost hovering. Planes propel by pushing air back. Momentum corresponds to the speed of the air pushed back, that is, energy lost. Maglevs do not push air back, but in a sense push Earth, a large mass, which can provide momentum at negligible energy cost. The use of magnetic forces for both suspension and propulsion appears to create great potential for low travel-energy cost, conceptually reduced by 1-2 orders of magnitude with respect to energy consumption by airplanes with similar performance.
Because maglevs carry neither engines nor fuel, the weight of the vehicle can be light and total payload mass high. Airplanes at takeoff, cars, and trains all now weigh about 1 ton per passenger transported. A horse was not much lighter. Thus, the cost of transport has mainly owed to the vehicle itself. Maglevs might be 200 kg per passenger.
At intercity and continental scale, maglevs could provide supersonic speeds where supersonic planes cannot fly. For example, a maglev could fuse all of mountainous Switzerland into one functional city in ways that planes never could, with 10 minute travel times between major present city pairs.
Traveling in a CAM for 20 minutes, enjoying the gravitational pull of a sports car, a woman in Miami could go to work in Boston and return to cook dinner for her children in the evening. Bostonians could symmetrically savor Florida, daily. Marrakech and Paris would work, too. With appropriate interfaces, the new trains could carry hundreds of thousands of people per day, saving cultural roots without impeding work and business in the most suitable places.
Seismic activity could be a catch. In areas of high seismic activity, such as California, safe tubes (like highways) might not be a simple matter to design and operate.
Although other catches surely will appear, maglevs should displace the competition. Intrinsically, in the CAM format they have higher speed and lower energy costs and could accommodate density much greater than air. They could open new passenger flows on a grand scale during the 21st century with zero emissions and minimal surface structures.
We need to prepare a transport system that can handle huge fluxes of traffic. A 2.7% per year growth in passenger kilometers traveled means not only doubling of mobility in 25 years but 16 times in a century, which is the rational time for conceiving a transport system. The infrastructures last for centuries. They take 50-100 years to build, in part because they also require complementary infrastructures. Moreover, the new systems take 100 years to penetrate fully at the level of the consumer. Railroads began in the 1820s and peaked with consumers in the 1920s.
It is time for my fifth Worthy Way, to conceive in detail maglevs for America. And to develop the required skills, such as tunnelling. Universities should be producing the needed engineers, operations researchers, and physicists, and government should partner with industry on the prototypes.
Like ZEPPs, maglevs will bring huge revenues to those who can design, build, and operate them, anywhere in the world.
Closing Remarks
A worldwide Census of Marine Life can reawaken the adventure of the Age of Discovery and teach us how to spare marine habitats. A study of the Great Reversal of human extension into the landscape can inspire us to lift yields and spare land for Nature. The National Human Exposure Assessment Survey can show what we absorb and how to spare exposures. ZEPPs can generate many gigawatts without harmful emissions, sparing the climate. And maglevs can multiply our mobility while sparing air and land. These Worthy Ways to spend on environment and resources cohere in the vision of a large prosperous human economy that treads lightly and emits little or nothing.
Research is a vision or dream in which we, like Leonardo da Vinci, simulate a machine first in our mind. Leonardo’s powers of visualization, one might say experiment, were so great, that the machines work, even if the letting of contracts and construction is delayed 500 years. Building machines is often costly. Dreaming is cheap. Let us start now with these Five Worthy Ways to Spend that can make dreams of improving the human condition and environment so irresistibly beautiful and true that societies, especially America, hasten to let the contracts and build the machines that can spare planet Earth–soon instead of after a delay of 500 years.
Acknowledgements: This essay was initially prepared as an address to the San Diego Science & Technology Council, La Jolla, California, 9 December 1998. Thanks to Edward Frieman and William A. Nierenberg (NAE) for hosting the visit. I am grateful to Cesare Marchetti, Perrin Meyer, and Paul Waggoner for helping develop these Worthy Ways over many years.
Figure Captions
Figure 1. The Great Reversal. After gradually increasing for centuries, the worldwide area of cropland per person began dropping steeply in about 1950, when yields per hectare began to climb. The diamond shows the area needed by the Iowa Master Corn Grower of 1998 to supply one person a year’s worth of calories. The dotted line shows how sustaining the lifting of average yields 2%/yr extends the Reversal. Sources of data: FAO Yearbooks, Food and Agriculture Organization of the United Nations, various years; Wallace’s Farmer, March 1999; J. F. Richards, “Land Transformation,” in The Earth as Transformed by Human Action, B. L. Turner et al., eds., Cambridge University, Cambridge, England, 1990.
Figure 2. Percentage of time spent in major locations by Californians. Source: J. A. Wiley, J. P. Robinson, T. Piazza, K. Garrett, K. Cirksena, Y. T. Cheng, and G. Martin, Activity Patterns of California Residents, California Survey Research Center, U. of California, Berkeley, 1991.
Figure 3. The maximum size of power plants, USA. Each line represents an S-shaped (logistic) curve normalized to 100 percent, with estimates for the midpoint of the process and saturation level indicated. So, the pulse centered in 1929 quickly expanded power plants from a few tens of megawatts (MW) to about 340. After a period in which plant size stagnated, the pulse centered in 1965 quadrupled maximum plant size to almost 1400 MW. The patterns for the world and a dozen other countries we have analyzed closely resemble the USA. We project another spurt in plant size centered around the year 2015, quadrupling the maximum again, to more than 5 GW. F is fraction of the process completed. Source of data: World Electric Power Data CDROM UDI-2454, Utility Data Institute, Washington DC, https://www.udidata.com/
Figure 4. Smoothed historic rates of growth (solid lines) of the major components of the USA transport infrastructure and conjectures (dashed lines) based on constant dynamics. The years are the midpoints of the processes, and delta t is the time for the system to grow from 10% to 90% of its extent. The inset shows the actual growth, which eventually became negative for canals and rail as routes were closed. Source: Jesse H. Ausubel, C. Marchetti, and P.S. Meyer, Toward Green Mobility: The Evolution of Transport, European Review 6(2):137-156, 1998.
References
[1] William A. Nierenberg, The Diversity of Fishes: The Known and Unknown, Oceanography 12(3):6-7, 1999.
[2] John H. Steele and Mary Schumacher,On the History of Marine Fisheries, Oceanography 12(3):28-29, 1999.
[4] “Thus, in spite of all the interest in fragmented populations, the primary aim in conservation should be simply to preserve as much habitat as possible.” (p. 47) Ilkka Hanksi, Metapopulation Dynamics, Nature 396:41-49, 1998.
[7] Roger A. Sedjo and Daniel Botkin, Using Forest Plantations to Spare Natural Forests, Environment 39(10): 14-20 & 20 & 30, 1997.
[8] Joyotee Smith, Can Secondary Forests Mitigate Primary Forest Depletion? Implications from Small-Scale Farms in the Peruvian Amazon, International Center for Tropical Agriculture (e.smith@cgnet.com).
[9] Special Issue on NHEXAS, Journal of Exposure Analysis and Environmental Epidemiology 5(3): 1995.
[10] Ames, B.N., Profet, M. and Gold, L.S., Dietary Pesticides (99.99% All Natural). Proceedings National Academy of Sciences USA 87:7777-7781, 1990.
[12] Jesse H. Ausubel, Arnulf Gruebler, and Nebojsa Nakicenovic, Carbon Dioxide Emissions in a Methane Economy, Climatic Change 12:245-263, 1988.
[13] Toshihiro Ishikawa et al., A Tough Thermally Conductive Silicon Carbide Composite with High Strength up to 1600o C in Air, Science 282: 1295, 1998.
[17] Jufer, M., Swissmetro: Wissenschaftliche Taetigkeit der ETH-Lausanne und Zuerich, Hauptstudie-Zwischenbericht Juli 1994-Juni 1996, ETH-Lausanne, Switzerland, 30 August 1996. URL https://sentenext1.epfl.ch/swissmetro.
[18] U.S. Department of Transportation, Compendium of Executive Summaries from the Maglev System Concept Definition Final Reports, DOT/FRA/NMI-93/02, pp. 49-81, March 1993. On-line at https://www.bts.gov/smart/cat/CES.html
[NOTE This is a draft of a paper that has recently appeared (slightly modified) in the journal Consequences: The Nature and Implications of Environmental Change 1(3):2-15, 1995]
A generation marks the average timespan between the birth of parents and that of their offspring. In the minds of many 1970 marked the birth of the modern environmental movement, symbolized by the first observance of “Earth Day” in April of that year. As the second green generation begins, it seems wise to measure the environmental changes since 1970.
In this paper we consider green change in three ways. First, we examine the underlying forces of economic and population growth. Second, we look at indicators of the environment per se. Third, we check changes in management and institutions. In all cases, we seek quantifiable, objective measures. We observe what people have done rather than what they say.
We recognize the great interest in changes in moods and attitudes with respect to the environment. These may determine the actions on which we report. However, we limit ourselves here to phenomena that can be recognized and counted in a relatively impartial way. We intend this paper to serve those seeking a factual survey in essay form. At the conclusion we list the main sources of data.
Underlying forces of growth and development
In 1970 global population was estimated at 3.7 billion. In 1995 it is believed to have reached 5.7 billion. Some 90 percent of the growth took place in developing regions. Population growth slowed in the last two and a half decades, but only to a rate that leads demographers to hope that global population may eventually stabilize between double and triple current levels. While in 1970 about 65 percent of world population remained rural, by 1995 45 percent were concentrated in towns and cities. Urbanization has been fastest in developing countries, where the cities grew by almost one billion people. The continuing heavy toll from “natural” disasters is Bly associated with large and growing populations in risk-prone areas, such as flood plains and low-lying coastal regions.
Total world commercial energy consumption grew at the same rate as population, from the equivalent of a little over 5 billion tons of oil in 1970 to just under 8 annually now. Thus, global per capita commercial energy consumption has stayed level. Per capita commercial energy consumption in low-income countries more than doubled. Absolute consumption remains centered in the wealthy industrialized nations, where 15 percent of the world’s population consume over half its energy.
Not only has energy use increased, but the estimates of energy resources that might eventually be tapped have grown. Contrary to expectations that the world would begin to exhaust its so-called fossil (hydrocarbon) fuels, proven reserves of oil have increased from 600 billion barrels in 1970 to 1,000 at present, even though over 500 billion barrels of oil have been pumped from the ground in that time. Proven reserves of natural gas have tripled over the last twenty-five years. The possibility that some environmental issues would diminish because of depletion of exhaustible resources has thus become more remote.
In some respects, the global energy system has evolved in a cleaner direction. While many were predicting increased reliance on “dirty” fossil fuels such as coal and oil shale, the reverse is occurring. The share of world primary energy served by natural gas, the cleanest fossil fuel, has increased by over a quarter. Compared with coal and oil, burning natural gas releases lower quantities of carbon dioxide as well as pollutants such as sulfur dioxide and particulates.
Between the early 1970s and 1990, the energy intensity, measured in energy used per dollar of gross domestic product, decreased in 19 of 24 advanced industrialized nations belonging to the Organization for Economic Cooperation and Development (OECD). Energy efficiency has increased. The average rate of improvement that has persisted in the OECD nations doubles efficiency in about 30 years. However, overall efficiency remains extremely low, with more than 90 percent of energy lost or wasted in the complete process of conversion from the raw material such as coal to the final energy service such as the light to read a book. Further large increases in energy efficiency are clearly attainable through diffusion of existing best practices and technological progress.
Much of the expanded consumption of energy has been channeled into electrification. World production of electricity increased one and a half times since 1970. Electricity consumption increased more rapidly than non- electric energy in both industrialized and developing countries. As with growth in primary energy consumption, electrification has been more rapid in developing countries. In Africa, for example, increases in electrification have nearly doubled the world rate. In contrast to the experience of industrialized countries, most electricity in Africa has come through expanded use of fossil fuels.
Generally, with electrification has also come a trend away from fossil fuels, primarily through expanded use of nuclear power, especially in industrialized countries. Although the future of nuclear power remains uncertain and national experiences with nuclear programs differ, in one generation the capacity of operating nuclear plants has increased more than twentyfold. The world of the 1990s is much more nuclear than 1970, with 420 nuclear power plants providing 7 percent of the world’s primary energy, and about a quarter of the electric power in the industrialized nations. Over six nuclear reactors operate today for every one in 1970. Globally, 55 nuclear plants were under construction in 1994. Chernobyl and other nuclear accidents have heightened nuclear fears that were less apparent in 1970. The shift from carbon-heavy fuels such as coal and oil to carbon-light gas and the growth of nuclear power contribute to the gradual “decarbonization” that is the central tendency of the world energy system.
With more people and more energy has come more travel. Global affluence has vastly increased mobility. The number of motor vehicles in use worldwide has more than doubled to the imposing figure of about 600 million. Automobility in countries with rapid economic growth such as Japan has increased fastest. North America had slower but substantial absolute growth, expanding its fleet from about 120 million motor vehicles in 1970 to about 220 million in the early 1990s. Car population in developing countries has increased steeply, but it remains unclear whether cars will pervade these societies as they do the North. Since the first 747 began passenger service in 1970, global air travel grew by a factor of five, much faster than car travel.
With larger and wealthier populations have also come important changes in agriculture that affect the environment. Most change has come through intensified production, as the global area of arable and permanent cropland has changed little since 1970. World fertilizer consumption nearly doubled from 1970 to the mid-1980s and has remained about level since. As with growth of energy consumption, the largest percentage increases were in low income countries. Currently, low income countries apply fertilizer at about 90 percent of the rate in high income countries; in 1970 the ratio was only 17 percent. Globally, increased mechanization, irrigation, and other changes yielded two-thirds more grain from the same hectare of land in 1994 than 1970. The use of pesticides does not appear to have expanded in industrialized nations, and in some it has decreased, while in Asia it has more than doubled. Few data exist for pesticide and herbicide trends in developing countries, but use has almost certainly increased substantially.
Several cycles of more productive seeds have been bred and put into use for many crops since 1970, and the number of gene banks, the source of raw materials out of which better crops grow, has multiplied tenfold. Yields for staple crops such as wheat and rice have grown faster than human population. Overall, food production has kept pace with population, even in sub-Saharan Africa, where many of the world’s poorest countries are located. Still, perhaps one-fifth of the world population remains hungry. Trade in agricultural products has expanded dramatically. Present cereal imports to Asia are almost double those of 1970. The direction of dietary behavior, toward higher meat consumption (including fish and poultry) with higher income, has not changed.
The reported world catch of fish has risen at one and half times the rate of world population growth. Accurate knowledge of the conditions of stocks remains inadequate, but commercial harvesting has definitely caused significant changes in the catch and species composition. The makeup of the catch has moved down the food chain as the stock of higher species, such as tuna, decrease. With wild stocks under pressure, aquaculture is beginning to play a significant role in seafood production. Fish farms produce about one- seventh of world seafood by weight and one-third by value.
More energy, travel, and food indicate some success in social facets of development. For example, since 1970 infant mortality in developing countries has dropped by 40 percent, and life expectancy at birth expanded by 5-10 years. Rates of adult literacy in the developing countries have grown substantially, especially in low income countries. Access to safe drinking water in developing countries has grown at double the rate of population.
By conventional monetary measures the absolute economic gap between rich and poor countries has widened in the last decades. The rate of growth of per capita income in the wealthier nations doubled that in the low and middle income countries between 1974 and 1991. As a result, the industrialized nations increased their share of global GDP from three quarters to almost four-fifths even as their share of global population declined.Differences in “human development,” a combination of indicators of literacy, life expectancy, and other societal measures have narrowed overall. Some developing countries with higher than average measures of economic growth have not achieved particularly high measures in other facets of development. Educational indices measured as overall school enrollments and mean years of schooling show a continuing discrepancy between the industrialized North and the developing South. While the relative incidence of poverty, illiteracy, and hunger has declined or remained constant, absolute numbers of deprived people have in almost every case increased. Moreover, in major areas of the world, notably Sub-Saharan Africa, indices of welfare have declined.
Since 1970 the composition of economic activity has continued to shift from agriculture via manufacturing to services. In some nations, the share of the workforce engaged in agriculture and in manufacturing has dropped steeply. Some service industries such as information processing, exemplified by the personal computer, have reached levels unanticipated twenty-five years ago. The environmental issues of the information and services age, such as tourism and solid waste disposal, have fully joined those of manufacturing and agriculture.
Environmental protection, which has been directed primarily at reducing health effects of environmental degradation, is taking place in the context of increased worldwide spending on health. This is evident in developing and industrialized countries alike. The doubling of world spending on health as share of GNP since 1970 indicates changing preferences that come with economic development. Environment and health are linked through channels ranging from irrigation waters that can harbor disease-carrying snails to the ventilating systems of office buildings and homes. Remarkably little is known in any country about actual or cumulative human exposures to environmental pollutants in air, water, soil, and food and how these may be changing.
In sum, production, consumption, and population have grown tremendously since 1970. The gross world domestic product increased to about $24 trillion in 1994, over twice the value in 1970 after accounting for inflation. Globally and on average economic and human development appears to have outpaced population growth.
Direct indicators of the environment
Indicators for environmental issues may be grouped by geographical scale, namely those associated with large areal or global issues; those primarily significant at a regional level; and those at a local level. Of course, many threads connect.
Globally, much attention has focused on projected climatic change because of the fears of the potentially far-reaching consequences of a drastic warming and associated sea level rise. To date, human-induced global climatic change is associated principally with emissions of carbon dioxide (CO2) from burning of fossil fuels in developed countries. The 1980s were an unusually warm decade, following the cool period that culminated in the early 1970s, suggesting for many that anthropogenic global warming is now evident. From 1970 to the early 1990s, fossil fuel emissions of CO2 grew 50 percent, about as much as population, so that per capita emissions have remained level. Meanwhile, atmospheric concentrations of CO2 have increased 10 percent. In some economies, including France and the United States, per capita emissions decreased due to improved energy efficiency and decarbonization. The United States remains far the largest emitter of greenhouse gases. The abundance of other greenhouse gases has also continued to rise. Atmospheric methane increased an average of 1 percent annually until 1992, when its growth slowed. Greenhouse gas emissions from developing countries have risen steeply. The developmental choices of these countries appear most fateful for the future composition of the atmosphere.
The second truly global environmental concern is depletion of the stratospheric ozone layer by chlorofluorocarbons (CFCs) which could lead to increased exposures to ultraviolet light harmful to human health and affecting the productivity of ocean plankton and land plants. Production and use of CFCs concentrate in the industrialized countries. Production grew steadily in the early 1970s and leveled later in the decade, when the United States and a few other industrial countries banned particular uses of CFCs. International protocols on substances that deplete the ozone layer, signed in 1987 and amended in 1990 and 1992, phase out fifteen CFCs by 1996. Phase out of halons, another ozone-depleting substance, was completed in 1993. Developing countries have a 10-year delay in implementing commitments. The sudden detection in the mid-1980s of a “hole” in the ozone layer in the spring over Antarctica catalyzed signature of agreements. Measurements from the past few years suggest that ozone depletion continues at a rate more rapid than predicted, spreading in area, and appearing in the Arctic and mid-latitudes as well. Documentation of increased consequent ultraviolet radiation at the surface of the Earth remains elusive.
A third global issue is preservation of biological diversity, much of which resides in tropical forests. Estimates of the total number of species range from three to more than eighty million; the number named stands at around 1.5 to 1.8 million, and cataloging new species progresses slowly. As vegetation is reduced in many parts of the world, as many as half the species may be at risk. However, data on species loss are poor; much of what is lost is unrecorded, associated with the destruction of ecosystems in areas that have been largely unstudied. The rate of worldwide species extinction may be known only within a factor of 10. Even in the United States, statistical problems are considerable, as evident in the government list of endangered and threatened species. Since 1970 the number has doubled, but inclusion is limited to well-described plants and animals. Fluctuations in the listing result partially from procedural, administrative, and political forces and do not necessarily reflect changes in the natural environment. Declines in numbers of prominent species such as the African elephant, panda bears, and sea turtles are well-documented.
Loss of habitat, particularly wetlands, is well-documented for many countries. Coastal marine regions remain under great pressure, the effect of coastal population growth and development, associated changes in water quality, increased marine debris and pollution, and destruction of habitat, including mangrove forests, sea grasses, and coral reefs. The rise of interest in biodiversity stems not only from anthropocentric concern about the potential practical value of species but from ethics that emphasize the intrinsic value of all species and ecosystems.
Integral to the issue of biological diversity is the question of deforestation, in particular in tropical regions. Globally, forest cover today appears to be about 80% of what it was 3,000 years ago, when agriculture began to expand. In the past twenty-five years, according to data reported by governments, global wooded areas have diminished slightly. In the temperate zone, forests have generally increased during recent decades, a signal development. While cutting threatens stands of older and rarer trees, the majority of tree-harvesting in this zone is done on a sustainable basis. Removal of tropical forests has progressed at rates estimated at 1 percent per year and higher, as forests are cleared for fuelwood, crops, and pastures. Asian and South American wood production since the 1970s was 70% higher than the global average, further suggesting deforestation. The proportion of the world’s land surface used for farms and pastures has remained constant at about 35 percent since mid-century. Though much of the land surface has been altered by human action, human artifacts actually cover less than 1 percent.
On a regional scale, acid deposition, mainly caused by emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx), emerged in the 1970s as a major issue in North America and Europe, and to a lesser extent in East Asia. In the United States, SO2 emissions are primarily from electric power plants and have dropped a third since 1970, though pressure for reductions probably came more from concerns about the local effects of SO2 on air quality and health than from acid rain. NOx emissions, from automobiles as well as power plants, remain steady with some annual fluctuations. Decreased emissions of SO2 are evident in lower rainwater sulfate, but the acidity of rainwater has still generally increased in prone regions. Red spruce trees, among the vegetation apparently most susceptible to acid rain, show diminished growth, although the extent to which acid precipitation is the cause is uncertain.
Transboundary acid deposition also occurs in Japan from Chinese and Korean emissions, but we lack long-term records of the extent of this problem. Emission, transport, and deposition of acid-causing emissions occur elsewhere, especially where fossil fuels are heavily used, but sparse data and knowledge of regional meteorological conditions clouds assessment of the problem. The numerous other natural and anthropogenic changes pressing upon ecosystems make hard the attribution of effects to acid rain.
Another issue with regional (as well as international and local) implications is storage and disposal of nuclear wastes. With the rise of nuclear electrification, the volume of spent fuel and other wastes has risen substantially but is still small. In the United States, the volume from commercial power plants is lower than expected twenty-five years ago because the number of plants actually constructed has not reached projected levels. Defense nuclear wastes are large contributors to the total waste volume. In the United States the environmental problems of defense nuclear operations are now public, and considerable government resources have been allocated for site remediation. Little reliable information exists on nuclear waste in the former Soviet Union, but anecdotes suggest a severe problem. Earlier disposal practices, such as dumping of low-level nuclear waste at sea, have been completely stopped by formal treaty because of environment-related concerns. Improved regimes for transport, storage, and disposal of nuclear wastes have been designed but not fully tested.
On a local scale, many trends in environmental quality are well- documented, because environmental policy began by addressing such issues as urban air pollution.
In the United States, the number of persons living in areas violating the National Ambient Air Quality Standards (NAAQS) for ozone in the lower atmosphere fell by over 10 percent from 1984 to the early 1990s. National ambient concentrations of ozone, as well as carbon monoxide, have dropped by over 40 percent since 1970. The reduction was achieved through technological changes that yielded lower emissions of pollutants from transportation. The nearly complete elimination of leaded gasoline largely accounts for reduction in airborne lead levels by a factor of 20. However, with growth of vehicle fleets and accompanying gridlock, chronic pollution of urban air has not much lessened in the United States and in some areas worsened. In the Los Angeles area, strategies to prevent further deterioration of air quality have roughly compensated for population growth. The serious problems of urban ozone pollution in that area have not changed much since the late 1970s. In Japanese cities conditions have also roughly tracked urban population growth.
The record for other air pollutants is similarly mixed. SO2 pollution has generally lessened considerably in the cities of the industrialized world. Trends in nitrogen dioxide are mixed; in many cases concentrations have become markedly higher. Particulate concentrations have improved in many cases, but not by much. In France a dramatic drop occurred due to the shift from fossil fuels to nuclear power. Possible health effects of air pollutants provide the main basis for air quality standards. Yet, relatively little is known about the collective and cumulative effects of atmospheric pollutants on human health, particularly members of sensitive groups.
In developing countries, many of the largest cities suffer acute air pollution problems. During the 1980s, major Chinese cities such as Beijing and Shanghai exceeded World Health Organization (WHO) standards for particulate levels an average of 272 and 133 days per year respectively. The average in New Delhi over the same period was 295 days. Since the mid 1970s, SO2 levels exceeded the standard an average of 100 days per year in Teheran. In 1991 in Mexico City air quality standards were seriously violated over 300 days. Indoor air pollution is a sometimes severe problem that has been recognized and measured only recently. Asian households using wood- and dung- fueled ovens experience indoor particulate concentrations greater than one hundred times the WHO standards.
Another problem of intense local concern is disposal of wastes. Rates of municipal waste production have increased linearly with time in the United States in the 1970s and 1980s, but have not grown as fast as GDP. In many areas the limited capacity of landfills has led to rising costs for waste disposal and attempts to export wastes to more distant locations, sometimes in other nations. Consumption of specialized materials such as aluminum and plastics continue to grow. Global steel production grew at half the rate of population and a quarter the rate of GDP. The amount produced in electric arc furnaces, which rely almost exclusively on scrap, has more than doubled. The number of enabling technologies and markets for recycled materials continues to increase, but the gains have not fully offset growth in primary consumption. Overall, evidence of global “dematerialization” or decreasing intensity of materials use is inconclusive.
No single overall trend summarizes marine and water pollution. Since 1970 the amount of oil spilled annually has fluctuated with sporadic large departures from the mean, as in 1991 due to the Valdez oil spill in Prince William Sound. The number of tanker accidents was lower in the 1980s and early 1990s than the 1970s. The decreases probably owe to improved technical standards for petroleum transportation over the last two and a half decades. Although commanding less public attention than spills, “normal” operational discharges of oil into the sea, primarily from washing tanks and discharging ballast water, form the largest source of marine oil pollution and remain hard to assess. Inland water bodies, such as the Aral Sea in Central Asia, groundwaters, and many rivers in both developing and industrialized regions have continued to experience major problems as a result of combinations of imprudent irrigation, diffuse pollution sources such as urban runoff, fertilizer and pesticide use, and contamination from both active and inactive industrial sites. Some water bodies have been reclaimed. For example, on average the availability of dissolved oxygen in the rivers of the OECD nations improved over the past twenty-five years, though much remains to achieve high levels of water quality.
The prevalence of several environmentally hazardous materials has diminished considerably. Strontium-90 has dropped sharply worldwide since the 1960s when atmospheric testing of nuclear weapons was banned. In the United States, levels of PCBs (used as coolants in power transformers) and lead (used in various forms in gasoline, cables, pipes, paint, and industrial chemical processes) have declined dramatically in the last decades as adverse health and environmental consequences have been identified and policy responses formulated and implemented. Despite being banned, their persistence in the environment has kept them a leading topic of toxicological research. Previous disposal of these and other hazardous wastes has contaminated many locations around the world, and the catalogue of these sites has grown. In the United States, documentation and remediation predominantly concern previously contaminated sites, with few new sites created.
Changes in management and decision-making
The source of some of the successes in decreasing environmental risks shows in indicators of environmental management and institutions. Among such indicators are the number of laws and regulations governing environmental matters, the level of expenditure on environment, application of technology to environmental problems, and the creation of institutions to deal with environmental issues.
In the United States, the number of federal laws for environmental protection has more than doubled since 1970. Compliance with laws also reportedly increased, though data are sparse. The number of acts and regulations relating to environment in the United Kingdom increased from 6 in 1885, to 21 in 1945, to about 100 in 1970, and has tripled since then to about 300. The environmental directives and decisions of the European Community were initiated about 1970 and grew to almost 200 by 1990. The number of multilateral agreements on environment, which totaled about 50 in 1970, now nears 200. The point of maximum activity in the process of making rules for environment appears to have occurred about 1980.
Spending is a second indicator of response to environmental issues. In the United States, real spending on pollution abatement doubled since 1970 and currently exceeds $90 billion annually. Industry spends most. U.S federal outlays for natural resources and environment more than doubled in real term from 1970 to over $22 billion in 1994. U.S. federal environmental R&D now totals about $5 billion, likely more than doubling the comparable 1970 sum.
Pollution control commonly mandates abatement technologies, whose diffusion provides another indicator of trends in environmental protection. One example is flue gas desulfurization (FGD), which removes SO2 before release to the atmosphere. In Japan, capacity for FGD has increased nearly thirty-fold since 1970. Germany has imposed strict FGD requirements as a result of concern over dying forests. Another example is catalytic converters for automobile exhausts. In the United States these were introduced in the mid-1970s and are now found on more than 90 percent of the vehicle fleet. Many countries do not yet require or enforce auto emission controls. Technological solutions can also help reduce threats to water quality. In the United States, the fraction of the population served by wastewater treatment plants has doubled since 1970 to 75 percent of the population, typical of the OECD as a whole.
To curb pollution, many government regulators, especially in the industrialized world, have recently turned to voluntary agreements that are flexible to allow for innovation by the private sector. In Japan more than forty thousand such agreements have been concluded since the early 1970s. Within firms, innovative practice is becoming more preemptive, as the trend is towards pollution prevention. Successful instances of pollution prevention must now be numerous, but non-releases are hard to quantify.
Increased governmental spending and oversight has led to the creation of institutions, governmental and non-governmental, devoted to environmental protection. Globally, the number of ministerial-level departments of environment has increased from fewer than 10 in 1970 to over 100. Green political parties have formed in many countries. In 1992 the United Nations convened an ‘Earth Summit’ on environment and development that was attended by over 100 heads of state. The summit responded to and encouraged global environmental awareness and urged individual countries to set coherent priorities through national plans which most countries prepared in advance and many are updating. Tangible products were treaties on biodiversity, climate, and tropical deforestation as well as the establishment of an ongoing Commission on Sustainable Development to monitor progress in implementing international environmental commitments and the ideals of “sustainable development”. Formed in 1972, the United Nations Environment Programme (UNEP) has grown to be a substantial organization engaged in information exchange, monitoring, and coordination of national programs for environmental protection. The World Bank, UNEP, and the United Nations Development Programme created a Global Environment Facility (1991), as the main multilateral mechanism to provide funds to developing countries for complying with environmental commitments.
Non-governmental environmental organizations (NGOs) have multiplied, roughly tripling in the United States between 1970-1990. Increasingly, NGOs provide services previously reserved by governments, and distribute funds from international organizations and national governments. The NGO liaison unit with UNEP had 726 member organizations in 1993, a figure which has risen steadily since 1972. The non-governmental Scientific Committee on Problems of the Environment (SCOPE), the premiere international scientific network of environmental scientists, has published more than 40 authoritative reviews since its founding in 1969 by the International Council of Scientific Unions. New domestic institutions that bridge the public and private sectors to address particular issues such as clean up of hazardous waste sites have also been created. Numerous proposals have appeared for new international organizations, including regional networks and centers.
One of the most important strategies for environmental protection has been through zoning and reservation of lands. National forests, nature parks, and similar areas represent resources set aside, with various levels of restrictions, to conserve the environment. In most countries the area of protected lands has continued to increase. Internationally, since the mid 1980s the amount of land protected rose almost 90 percent. Because of a few large acquisitions, the area of the national park system in the United States has more than tripled since 1970.
Conclusions
Our review of the past 25 years suggests the following:
The record of recent change in environmental quality is uneven. The common view that the environment is deteriorating in almost all respects is not justified. Several important trends are moving favorably as a result of applications of science and technology as well as behavioral and policy shifts in both developing and industrialized countries. For example, energy intensity, the source of major environmental problems when fuels are dirty, is decreasing, and the fuel mix is decarbonizing, signifying a shift to cleaner sources. Moreover, societies have mobilized to a remarkable extent to address environmental issues. Keeping pace with environmental considerations may become harder. Consumption and population growth continue to offset efficiency gains so that in many cases and places environmental burdens become heavier. Humans have to be ever smarter, if we are more numerous and if each one of us on average is processing more materials. Pressure on the environment seems bound to increase in many urban and coastal areas. The need for innovation and diffusion of environmentally more benign technology is enormous and growing. People are demanding higher environmental quality. The lengthening list of issues and policy responses reflects not only changing conditions and the discovery of new problems, but also changes in what human societies define as problems and needs. On the one hand, survival requires environmental protection. On the other, with higher income preference rises for environmental amenities. Where development succeeds, the preference for environmental goods will grow. Where development fails, environmental deterioration may become worse and bear blame for impoverishment. Environmental issues are increasingly shared and international. Pollutants cross borders, effects cross borders, and world markets link the sources and consequences of the problems. The issues are also international because key technologies are selected on a global basis, so that a nation desiring an alternative style of development can hardly maintain an island of independence from the international system. Driving forces, such as the energy system, are fundamentally global. Developing countries are most at risk from environmental problems. Connected to industrialization and urbanization, environmental issues on the agenda in industrialized nations now manifest themselves intensely in the developing world before these countries solve earlier environmental problems associated with population growth and poverty, such as deforestation. Moreover, in some respects vulnerability of developing countries to environmental hazards may be increasing, for example, through population growth in low-lying coastal areas prone to flooding. Knowledge of environmental issues has progressed rapidly but remains tentative, partial, and insufficiently widespread. Reliable foresight of environmental changes has improved, as has our ability to detect change. Yet, many environmental changes are still poorly documented, especially in developing countries. Human exposures to environmental risks are not well- documented. Surprises, such as the Antarctic ozone hole, have occurred. While our understanding of individual issues has advanced, potential interactions and cumulative effects of problems merit much more study. We have prepared ourselves to solve the environmental problem. Even with the gaps in knowledge, society at all levels has articulated the environmental problem over the past twenty-five years and recognized many ways to address its sources and manifestations. The burdens humans place on the environment and the resources of knowledge and money at our disposal to modify and adjust these burdens will contest endlessly. But we can surely gain green ground over the next 25 years.
Data note
Numerous sources provided the data for this text. Several which stand out for general utility are referenced below. The biennial World Resources offers the widest range of environment-related data with continental and global aggregates; the United Nations Development Programme’s annual Human Development Report groups countries by income level and is the best source for data for social indicators; the World Bank’s annual World Development Report similarly groups countries by income and is the leading source for global and national economic data; British Petroleum’s annual Statistical Review of World Energy is an authoritative source on world energy consumption classified by individual countries and major energy sources; the annual Statistical Abstract of the United States and Environmental Quality report are rich sources for detailed U.S. data and include some global information as well. For more specific information on references to these and other sources, please contact the authors.
World Resources. 1987, 1990-1, 1992-3, 1994-5. World Resources Institute. New York: Oxford University Press.
Human Development Report. 1990-4. United Nations Development Programme. New York: Oxford University Press.
World Development Report. 1992-4. World Bank. New York: Oxford University Press.
BP Statistical Review of World Energy. 1994. The British Petroleum Company, Employee Communications & Services. London, UK: Dix Motive Press Ltd.
Statistical Abstract of the United States, 114th edition. 1994. U.S. Department of Commerce.
Environmental Quality, 23rd Annual Report. 1991-3. Council on Environmental Quality. Washington, D.C.: U.S. Government Printing Office.
Acknowledgment: We thank Peter Elias for research assistance.
Note: An antecedent of this paper by Ausubel and Victor appeared in “International Environmental Research and Assessment,” pp 55-70. New York: Carnegie Commission on Science, Technology, and Government, 1992.
Appendix
Data Sources for “The Environment Since 1970”
Data on world population by geographical region are collected by the United Nations and presented in the annual United Nations Statistical Yearbook (New York: UN), as well as World Resources Institute’s biennial World Resources (New York: Oxford University Press). Population divided along lines of economic development is reported by the World Bank in, the annual World Development Report, (New York: Oxford University Press). Urban and rural populations are disaggregated in the United Nations Development Programme’s annual editon of the Human Development Report (New York: Oxford University Press). A complete survey of world commercial energy, including data on reserves, is found in British Petroleum’s annual BP Statistical Review of World Energy (London: BP); the World Development Report conveniently aggregates energy consumption according to level of economic development. Energy intensity for the United States and other member countries of the Organisation for Economic Co-operation and Development (OECD) is reported annually in OECD: The State of the Environment (Paris: OECD). On efficiency, see R.U. Ayres, 1989, “Energy efficiency in the US economy: A new case for conservation” (Laxenburg, Austria: International Institute for Applied Systems Analysis, RR-89-12). Data on electrification (including nuclear energy) are compiled in World Resources, as well as OECD, 1994, Electricity Information 1993 (Paris: OECD). Information on the number of operating nuclear power reactors is available from the International Atomic Energy Agency, 1994, Nuclear Power Reactors in the World (Vienna: IAEA). On decarbonization see, J.H. Ausubel, 1992, “Industrial ecology: Reflections on a colloquium,” Proc. Natl. Acad. Sci. USA 89(3):879-884. Global and continental vehicle data are from the Motor Vehicle Manufacturers Association (MVMA), Motor Vehicle Facts and Figures ’93 (Detroit, MI: MVMA), and earlier editions; air travel data are from the United Nations’ Statistical Yearbook.
The annual United Nations’ Food and Agriculture Organization Production Yearbook (NY: UNFAO) compiles data from many sources on arable and permanent cropland and includes data on global fertilizer use. Data on crop yields are from B.R. Mitchell, 1988, European Historical Statistics 1750-1975 (NY: Facts on File), the UNFAO, and the U.S. Department of Agriculture’s PS&D View database; fertilizer usage and total caloric intake are from the World Bank’s World Development Report. Trends in the mechanization of agriculture are reported in the U.N. Statistical Yearbook; World Resources contains partial global data on pesticide use; comprehensive data for the U.S. are reported by the Council on Environmental Quality annual publication Environmental Quality (Washington: U.S. Government Printing Office). Trade in agricultural products is from the U.N. Food and Agriculture Organization, and selected data are printed in the U.N. Statistical Yearbook; see also U.N. Conference on Trade and Development, 1990, UNCTAD Commodity Yearbook (New York: United Nations). Growing use of gene banks is discussed in D.L. Plucknett et al., 1983, “Crop germplasm conservation and developing countries,” Science 220, 163-169. Production and yield of rice are from the International Rice Research Institute annual World Rice Statistics. Dietary data are available in the U.N. Statistical Yearbook; detail on the changing diet of the U.S. population is compiled in the U.S. Department of Commerce annual Statistical Abstract of the United States (Washington: Government Printing Office). Data on the world catch of fish and aquaculture statistics are from The State of the Environment, see also D. Pauly and V. Christensen, 1995, “Primary production required to sustain global fisheries,” Nature 374, 255-257.
Data on per capita income are taken from the World Bank’s, World Tables 93, (Baltimore: Johns Hopkins University Press). Infant mortality, life expectancy, access to safe drinking water, and adult literacy data are found in the UNDP’s Human Development Report, which also describes the “human development index”, a combination of economic and social indicators of development. Trends in the distribution of economic activity in agriculture, manufacturing, and services are from the World Development Report; data on the number of personal computers sold and in use are reported in Statistical Abstract. Spending on health as a percentage of GNP is reported in the Human Development Report. Gross World Product data are from the World Development Report.
Data on CO2 emissions from fossil fuels and cement, and methane emissions are from World Resources. Concentrations of greenhouse gases are from the Mauna Loa station (CO2) and other measuring stations and are reproduced in Environmental Quality and in World Resources. These two publications also reproduce data on production of CFCs from company reports to the Chemical Manufacturer’s Association. Methane data are in R.J. Cicerone and R.S. Oremland, 1988, “Biogeochemical aspects of atmospheric methane,” Global Biogeochemical Cycles 2:299-327. Decreases in the early 1990’s in the growth rate of atmospheric methane are reported in E.J. Dlugokencky et al., 1994, “A dramatic decrease in the growth rate of atmospheric in the northern hemisphere during 1992,” Geophysical Research Letters 21, 45-48. A summary of statistics on the loss of ozone over Antarctica and at high latitudes is found in R.T. Watson et al., 1988, Present State of Knowledge of the Upper Atmosphere 1988: An Assessment Report, NASA Ref. Publ. 1208. Worldwide ozone- loss is discussed in R.S. Stolarski et al., 1991, “Total ozone trends deduced from Nimbus 7 TOMS data,” Geophysical Research Letters 18, 1015-1018. Data on species are found in K. J. Gaston and R. M. May, 1992, “Taxonomy of taxonomists,” Nature 356, 281-282. The number of endangered and threatened species on the U.S. list is from the U.S. Department of the Interior, Fish and Wildlife Service, Office of Endangered Species and is also reported in Environmental Quality. Wetlands data for the U.S. are from Environmental Quality. Wooded areas data are from the United Nations’ Statistical Yearbook. World Resources reports information on the global wood trade; the OECD Environmental Data: Compendium 1989 (Paris: OECD) contains data on the export of wood products such as panels from all countries. Some data on changes in forest cover and resulting estimated CO2 emissions are reported in World Resources 1990-91, but these are controversial. One estimate of the increase in pastures (and decrease in forests) in Costa Rica is found in N. Myers, 1984, The Primary Source: Tropical Forests and Our Future (New York: Norton), p.132. Global land use data are in A. Gruebler, 1992, “Technology and global change: land-use, past and present” (Laxenburg, Austria: International Institute for Applied Systems Analysis).
Emissions of sulphur dioxide and nitrogen oxides in the U.S. are from Environmental Quality. Sulphate concentration and acidity of rainwater can be found in the OECD Compendium. Trends in the growth of red spruce trees are for the period 1970 to 1980 and are reported in National Research Council, 1983, Acid deposition: Long-term Trends (Washington: National Academy Press). The volume and radioactivity of nuclear wastes are from Environmental Quality; ocean dumping of nuclear wastes is discussed in OECD’s Compendium.
Data on the number of violations of the ozone standard from the National Ambient Air Quality Standards are from Environmental Quality . Emissions and average daily maximum concentrations are reported in Environmental Protection Agency, 1990, National Air Quality and Emissions Trends Report, EPA-450/4- 90- 002, as well as Environmental Quality. Similar (but less extensive) data on the Japanese environment are found in Environment Agency of the Government of Japan, 1988, Quality of the Environment in Japan. Data on particulate and SO2 levels in large cities in the developing world exceeding WHO standards are from World Resources. Municipal waste production in the U.S. is from the United States Environmental Protection Agency’s Characterization of Municipal Solid Waste in the United States: 1992 Update, Final Report. EPA Report No. 530-R-92-019. (Washington: Government Printing Office). On dematerialization, see I.K. Wernick, R. Herman, S. Govind, and J.H. Ausubel, “Materialization and dematerialization: Measures and trends,” in Technological Trajectories and the Human Environment, eds. J.H. Ausubel & H.D. Langford (Washington DC: National Academy) in press. Trends in recycling for some countries are published in the OECD Compendium. Data on global steel production broken by method of production are from the Statistical Abstract which includes world data on the volume and number of oil spills. Other marine and water data are in the OECD Compendium. Environmental Quality contains sample data on the levels of PCBs, Sr-90, and lead in the environment.
The number of environmental protection laws in the U.S. is reported by R.E. Balzhiser in J.L. Helm (ed.), 1990, Energy: Production, Consumption, and Consequences (Washington: National Academy Press). Multilateral agreements on the environment, as well as domestic spending for air and water environmental protection, are summarized in the U.S. Council on Environmental Quality’s Environmental Quality. Further information on multilateral agreements and organizations is found in L.K. Caldwell, 1990, International Environmental Policy: Emergence and Dimensions (Durham: Duke University Press), P. Brackley ed.; 1990, World Guide to Environmental Issues and Organizations (Harlow, Essex: Longman); and the 1987 European Environmental Yearbook (Washington DC: BNA). Data on U.S. expenditures on pollution abatement are from the Statistical Abstract. For a detailed account of U.S. federal environmental R&D funding see K.M. Gramp et al., 1992, “Federal funding for environmental R&D,” (Washington, DC: American Association for the Advancement of Science). Flue gas desulfurization capacity in Japan is from the Quality of the Environment in Japan report. The U.S. population served by waste water treatment plants is summarized in the U.S. Department of Commerce’s Statistical Abstract. Data on the number of environmental NGOs are from T. Princen and M. Finger, 1994, Environmental NGOs in World Politics, (London: Routledge). Data on protected areas are found in World Resources and refer to categories I-V established by the International Union for Conservation of Nature and Natural Resources (IUCN). Acreage of the U.S. national park system is from the Statistical Abstract.
Jesse Ausubel directs the Program for the Human Environment at The Rockefeller University in New York City, where Iddo Wernick is a research associate. Ausubel drafted the 1983 National Research Council report, “Toward an International Geosphere-Biosphere Program: A Study of Global Change,” the document which originated the IGBP and first employed the term “global change” in reference to environment. David Victor leads the program on compliance with international environmental commitments at the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria.
This article was published in the Resources for the Future (Washington, D.C.) newsletter Resources. Posted with permission.
The Greek oikos, for house, fathered the siblings economics and ecology. Economics, literally, are the house rules. Ecology is the branch of biology which deals with the mutual relations between organisms and their environment. Ecology implies more the webs of natural forces and organisms, their competition and cooperation, and how they live off one another.
Industry, according to the Oxford English Dictionary, is “intelligent or clever working” as well as the particular branches of productive labor. Reflecting in the late 1980s on the first two hundred years of the industrial revolution, several of us began to wonder whether it might be time for a new fusion of the old siblings, economics and ecology.[1] Industry, quantitatively, had essentially solved the problem of production. Factories could readily and cheaply make masses of shoes the world might want and stamp out masses of cars like tin ducks. But the massive production also generated massive by-production. And the by-products and the products themselves consumed material and piled and diffused into larger, more widespread threats. “Waste,” a seemingly trivial offspring of early economies, now seemed prepared to impoverish or murder its parents.
Green nature appeared to have gone far in solving this problem. In nature, webs connect organisms living together and consuming each other and each other’s waste. The webs have evolved so that communities of living organisms lose little or nothing that contains available energy or useful material. Organisms evolve that make a living from any waste product with available energy or useful material.
Industrial ecology asks whether Nature can teach industry ways to go much further both in minimizing harmful waste and in maximizing the economical use of waste and also of products at the ends of their lives as inputs to other processes and industries. A group of us, including Robert Frosch, Robert Ayres, and Braden Allenby, set off under the banner of “industrial ecology” to explore whether we could do away with all waste, or at least achieve massive reductions. The banner captured attention in industry, government, and academia. The National Academy of Sciences and AT&T convened a colloquium on industrial ecology in 1991. Since then, workshops, many organized by the National Academy of Engineering, have addressed facets of industrial ecology, including its bearing in manufacturing and services industries, symbiotic co-location of industries, experiences in different nations, relationship to global environmental problems, and performance measures.
The welter of emerging ideas stimulated the US Department of Energy through Lawrence Livermore National Laboratory to invite the sorting out of directions for research. During 1995-1997 a couple of dozen people participated in the process, which Iddo Wernick and I reported. Our view is that the goal of industrial ecology is to lighten the environmental impact per person and per dollar of economic activity and the role of industrial ecology is to find leverage, the opportunities for considerable improvement from practical effort. Industrial ecology can search for leverage wherever it may lie in the chain from extraction and primary production through “final” consumption, that is, “from cradle to rebirth.” Mindful of the endless re-incarnations of materials, the authors of the report refer to themselves as the “Vishnus,” for the Hindu god, the preserver.
The report discusses several means for lessening impacts, including:
Zero emission: chances and ways to move from leaky to looped systems, and plausible scenarios for the transition from leaks to loops, especially for energy.
Materials substitution: opportunities for changes in material properties to reduce environmental burdens and the time scales for improved or new materials to occupy markets.
Dematerialization: trends in delivering equal or more services with less stuff.
Decarbonization: evolution of the energy system for more service while burning less carbon, through more low-carbon fuel (natural gas) or no-carbon fuel (hydrogen) and through more efficient generation, distribution and use.
Functionality economy: conceiving industries anew as satisfying wants (e.g., floor coverings) rather than selling goods (e.g., carpets).
The report also explores methods for discovering and measuring progress, including:
Materials flow and balance analyses (pioneered at RFF, see accompanying article by Allen Kneese): Comprehensive accounting for industrial ecosystems at several levels (firm, sector, region) by elements (such as chlorine or cadmium) and by sectors (such as wood products or automotive).
Life cycle analyses of products: Only a handful, such as Styrofoam cups and diapers, have been analyzed , and we need quick, reasonably accurate ways to sketch many products as well as skills to detail the most important or subtle.
Indicators: Intensity-of-use, waste-to-product ratios and a suite of other metrics or compasses need to be developed and tested to guide the economy to get more out of material and leak less.
Finally, the report points to levers to achieve the goals of industrial ecology. Some levers relate to choosing materials, designing products, and recovering materials. Other levers relate to institutional barriers and incentives. For example, what are the prospects for waste markets and waste exchanges? Can accounting that tracks materials better favorably improve both the environmental performance and profitability of firms? What leverage can be gained by changes in regulation of the recovery and transport of industrial wastes or by manufacturers taking back products?
The search for leverage is underway in the US and around the world. The White House Council on Environmental Quality leads an industrial ecology interagency group soon to report on materials. The research scene is lively in Germany, the Netherlands, and a fast-growing list of other countries. The field now has a dedicated Journal of Industrial Ecology. Lucent, AT&T, and NSF award fellowships to industrial ecologists. The first Gordon Conference on industrial ecology will take place in June of 1998. In this emerging field, the simple, powerful idea that society must balance its accounts of materials and energy, which RFF nurtured in the 1970s, is coming of age.
Jesse H. Ausubel, an RFF university fellow, directs the Program for the Human Environment at The Rockefeller University. He co-authored with Iddo K. Wernick, a senior research scientist at Columbia University’s Earth Institute and a guest investigator with PHE, the report Industrial Ecology: Some Directions for Research. Ausubel summarized the report in an RFF seminar in September 1997. The report is available on the PHE Web site at https://phe.rockefeller.edu/ie_agenda/. A list of some of the key WWW sites on industrial ecology can be found on the RFF Web site at https://rff.org/.
[1] J. H. Ausubel and H. E. Sladovich (eds.), Technology and Environment, National Academy, Washington DC, 1989.
This essay was first prepared as a keynote address entitled “Robust Earth”, presented at the Open Science Conference of the Global Change Program (GCTE & LUCC) on 16 March 1998 in Barcelona, Spain. The marine section of the paper was added after the Barcelona meeting. The final version of the paper appears in the journal Technology In Society, Vol. 22:289-301, 2000.
In the middle of the 20th century, humans began to reverse the pattern they followed for millennia of extending further into nature to meet needs for food and materials. Recognizing this Great Reversal, I explore the areas in human use for cities, logging, and farming and search the centuries for principles and trends to forecast land use in the latter part of the 21st century when global population may number 10 billion. Offsetting the sprawl of cities, rising yields in farms and forests and changing tastes can release large amounts of land. For example, with growing population and cities, the USA in the next century could still newly spare for nature an area twice the size of Spain. Shifting from hunting to farming fish can similarly spare nature. Globally, wise and intelligent humanity can extend the Great Reversal into a Great Restoration of nature on land and in the sea.
Introduction
The American writer Gertrude Stein remarked around 1930 that the United States was already the oldest country in the world, because it had been in the 20th century longer than any other. Studying changes in the American landscape, I have become convinced that a Great Reversal is underway. For centuries Americans extended into the landscape as they became more numerous and sought more food, fuel, fiber, and other materials. In about 1950 Americans began to contract. In this essay I explore the global chance for a Great Reversal. This Great Reversal might liberate the environment from an important fraction of the disruption that humans cause.[1]
I simplify my task by focusing on area, hectares or square kilometers. I believe an areal measure of land actively used for cities, logging, and farming is the best single measure for environmental impact. Generally speaking, the smaller the total area in active human use, the more environmentally friendly will be the landscape.
To show why and how we can spare land, I will search the past century for principles and trends influencing building, logging, and farming and contemplate about 70 years into the future, when people may number 10 billion. Then I extend the logic to the oceans. Because the USA may presage the future, many of my examples are American.
Cities
The built environment, “cities” for short, includes land not only for roads, shopping centers, and dwellings, but also for lawns, town gardens, and parks. In the USA the covered land per capita ranges from about 2,000 m2 in states where travel is fast, such as Nebraska, to about 600m2 in slower, more urban New York.[2] The 30 million Californians, who epitomize sprawl, in fact average 628m2 of developed land each, about the same as New Yorkers.
The transport system and the number of people basically determine covered land. Greater wealth enables people to buy higher speed, and when transit quickens, cities spread. Both average wealth and numbers will grow, so cities will take more land.
What are the areas of land that may be built upon? The USA is a country with a fast growing population, and expects about another 100 million people over the next 70 years. At 600m2 each, the USA increase would consume 6 million hectares, about the land area of Belgium plus the Netherlands or five Connecticuts. Globally, if everyone new builds at the present California rate, the 4 billion added to today’s 6 billion people would cover about 240 million hectares, midway in size between Mexico and Argentina.
By enduring crowding, urbanites spare land for nature. In fact, migration from the country to the city formed the long prologue to the Great Reversal. Towering urbanites could spare more land. Still, cities will take from nature. Can changes in logging and farming offset the urban sprawl?
Forests
To shed light on changes of forested area, I ask first does multiplying the number of people or wealth equally multiply the use of the products taken from the forest? The answer to this question comes by dissecting historic growth in demand. This growth is the product of an identity: population multiplied times GDP per person multiplied times the timber product per GDP.
First consider the USA consumption of the four timber products: lumber, plywood and veneer, pulp products, and fuel.[3] Between 1900 and 2000 the national use of timber products grew about 70%. Large features of the century include the big growth of pulp—that is, paper and paperboard—and the small growth of lumber. Fuel wood use nearly disappeared and then re-emerged, mostly to power pulp and paper mills. Plywood consumption emerged but remained small.
The preeminent feature is that the consumption of timber products rose far less than the rises in population and wealth might suggest. At the end of the century, Americans numbered more than three and a half times as many as at the beginning, and an American’s average share of GDP had grown nearly five fold. Had timber consumption risen in constant proportion, Americans would have consumed about 16 times as much timber each year in the 1990s as in 1900, rather than the 1.7 times they actually consumed.
The explanation for the difference lies largely in the third term in the identity mentioned above, the product consumed per unit of GDP, for example, pulp/GDP. If this term, which I will call “intensity of use”, is constant, then consumption will rise in unchanging proportion to the combined rise of population and wealth.
Practically, what changes timber product per GDP? In the case of lumber, its replacement during the century by steel and concrete in applications from furniture and barrels to cross ties and lath lowered the intensity of use. Living in the stock of existing houses and prolonging the life of timber products by protecting them from decay and fire lower it. In the case of pulp, more widespread literacy and the shift to a service economy raised the intensity of use in the early 20th century. Thicker paper replaced thinner paper, and newspapers replaced oral gossip. More recently, thinner paper has again replaced thicker paper, and television has replaced newspapers, lowering the intensity of pulp per GDP. More generally, the onset of dematerialization, as telephones and magnetic files replace letters and manuscripts, is lowering it. Because both writing and packaging consume much pulp, both are opportunities for further improvements in intensity of use.
Overall, history shows the extent of forests in the USA changed little in the 20th century (Figure 1). Meanwhile, reversing hundreds of years of depletion, the volume of wood on American timberland has actually risen, by 36% since 1950. The main reason the forest has grown rather than shrunk is that on average a contemporary American annually consumes only half the timber for all uses as a counterpart in 1900. Meanwhile millers learned to get more product from the same tree, and foresters grew more wood per hectare. Already many areas initially cleared have regenerated, as evidenced by today’s large wooded areas in New England and the upper Great Lakes states. What is the woodland prospect?
Great opportunities seem open for forestry to raise yields and so further decouple demand for timber from demand for land. On a hectare of USA timberland, annual growth currently averages about 3 m3 of wood. Rates 10 to 20 times faster have been reported for trees as diverse as alder, poplar, eucalyptus, hemlock, and loblolly pine. Strategies as simple as ridges to improve drainage in wet soils speed growth. Sylvaculture could be at the beginning of a march of rising yields as agriculture was about 1940.
In the USA the plausible anticipation of a falling intensity of use for forest products should more than eliminate the effects of growing population and affluence, leading to an average annual decline of perhaps 0.5% in the amount of timber harvested for products. A conservative 1.0% annual improvement in forest growth would compound the benefits of steady or falling demand and could shrink the area affected by logging 1.5% annually. Compounded, the 1.5% would shrink the extent of logging by half in 50 years. If only one half of this amount occurs by leaving areas now cut uncut, the area spared is 50 million hectares, 8 times the area USA cities will cover, and about the combined area of the States of Washington, Oregon, and Maine, or the size of Spain. Compounding 20 more years would spare 20 million more hectares.
If we accept Gertrude Stein’s view of the American experience, forest regrowth appears part of modernity. In fact, studies of forest biomass for the decade of the 1990s in the boreal and temperate region in more than 50 countries show the forests expanding in every one.[4] Globally, rising productivity of well-managed forests should comfortably allow 20% or less of today’s forest area of about 3 billion hectares to supply most world commercial wood demand sustainably in the middle of the 21st century.[5] Wise and intelligent logging advances the Great Restoration.Farms
Farms
Now consider farms. Although farmers cannot recreate virgin land, they can allow wide returns of land to nature by the steady movement toward landless agriculture. For millennia land equated in stable proportion with food, so more mouths meant more hectares farmed, and land cropped per person expanded when each mouth sought a more ample diet. Then, in a global Great Reversal, fifty years ago farmers stopped plowing up more nature per mouth (Figure 2).
Yields per hectare measure the productivity of land and the potential for the Great Restoration. During the past half century, ratios of crops to land for the world’s major grains-corn, rice, soybean, and wheat-climbed fast and globally. Per hectare world grain yields rose almost 2 percent annually between 1960 and 1997. Between 1971-1995 the yields for an index of all crops rose annually about 1.7 percent in the USA and 2.1 in Mexico while speeding upward 2.8 percent in India and 3.4 in both Indonesia and China.
As fast as farmers advance, their horizon keeps opening. Take the case of corn. Since 1960, while rising in tandem, the average world farmer grew about half the corn per hectare of the average Iowa farmer, and the average Iowa farmer grew about half the corn of his most productive neighbor. The 1990s began in Iowa with an apparent corn ceiling of about 15 tons per hectare (t/ha). But master farmers thrust through this and subsequent ceilings six times in the decade. In 1999 the Iowa master corn grower, Mr. Francis Childs, broke the state record with 24.7 t/ha.[6] In fact USA farmers achieved many corn yield records in 1999, though faced with huge weather obstacles including late planting due to spring rains in some areas and severe drought later in the growing season in others.
Mr. Childs fertilized abundantly, inspected the growing crop more than twenty times, and controlled pests. He grew his crop without irrigation. He did grow three times as many plants on each hectare as his grandfather would have grown. Mr. Childs and his fellow Iowans do not monopolize high yields. Winners in carefully scrutinized national contests have regularly exceeded 20 t/ha since 1996 in locales as diverse as arid Tonopah, Arizona and changeable Sterling, Nebraska.
The diffusion of current best practice will occupy farmers for many decades. Because improving 2 percent per year means a doubling of performance in about 40 years, on the same area the average world farmer now grows about the same amount of corn as the average Iowa farmer grew in 1960, while the average Iowa farmer now grows about the same amount his most productive neighbor achieved in 1960.
The productivity gains have stabilized global cropland since mid-century, as shrinkage in nations as diverse as the USA, Italy, and Colombia have offset expansion in Brazil, Tanzania, and elsewhere. In essence, a cluster of innovations including tractors, seeds, chemicals, and irrigation, joined through timely information flows and better organized markets, raised the yields to feed billions more without clearing new fields.
Will high-yield agriculture tarnish the land? Farmers do many things on each area of land that they crop. In general, higher yields require little more clearing, tilling, and cultivating than lower yields. Protecting a plot of lush foliage from insects or disease requires only a little more pesticide than does sparse foliage. Keeping weeds from growing in deep shade beneath a bumper crop may require less herbicide per field than keeping them from growing in thin shade. The amount of water consumed is more or less the same per area whether the crop is abundant or sparse. Growing higher yields distills away only a little more water and leaves only a little more salt than lower yields.
Seed is planted per plot; choosing a higher yielding variety need not affect the surroundings. If the improved variety resists pests, it lessens the external effects of pesticides compared to a sprayed crop. By minimally changing the external effects of things that farmers do per area, lifting yields will thus lower effects per unit of yield.
Per plot, farmers do use more of some things, such as fertilizer, to raise the yield of their crops. For example, they have applied more nitrogen fertilizer per plot to raise yields. Americans appear to have reached or passed the point of diminishing returns for applications of nitrogen fertilizer. Since 1980 in the USA absolute nitrogen use has been level and per crop has declined. In fact, the key to lifting yields is usually the sound, complementary use of varieties, water, and fertilizer, and the declining fertilizer per USA crop production indicates better management of complementary factors. Globally, nitrogen use peaked in 1988, and the sum of world fertilizers, including phosphates and potash, remains about 10% below the peak a decade ago.
If land used for farming shrinks, water use will also tend to fall, although the fraction that is irrigated will rise. In the USA, where farmers use the largest share of water, both rising withdrawals and consumption reversed about 1970 (Figure 3). Despite gains in water use efficiency, the United States is far from most efficient practice. Water withdrawals for all users in the OECD countries range tenfold, with the USA and Canada the highest. Allowing for national differences in the major uses (irrigation, electrical cooling, industry, and public water supply), large opportunities for reductions remain.
Some blame meat for eating land. Like the demand for forest land, land used for meat is the product of an identity: population times wealth ($/person) times diet (kg meat/$) times feed conversion efficiency (kg feed/kg meat) times 1/crop yield (hectares per kg of feed). In the USA between 1967 and 1990, while MacDonald’s multiplied, US land used to make meat shrank. Population and wealth increased, but diet favored meat less, the feed needed to make meat declined, and the hectares needed to grow the feed lessened as yields rose. Net, about 2% less US land each year made meat.
Let me introduce one caution here: variability. The largest deviation of the Iowa average corn yield doubled from about 20% in the 1960s and 1970s to about 40% in the 1980s and 1990s. The largest deviation of a winning Master yield was only 7% during the earlier decades but was 27% during the later ones. Reducing the growing variability and lifting the mean challenge us to make the Restoration great.
Globally, the future for both lifting means and reducing variability lies with precision agriculture. This approach to farming relies on technology and information to help the grower use precise amounts of inputs—fertilizer, pesticides, seed, water—exactly where they are needed. Precision agriculture includes grid soil sampling, field mapping, variable rate application, and yield monitoring—tied to global positioning systems. It helps the grower lower costs and improve yields in an environmentally responsible way. At a soybean seminar in Dayton, Ohio, covered by the Associated Press on 10 February 1997, American farmers reported using one-third less lime after putting fields on square-foot satellite grids detailing which areas would benefit from fertilizer.
Technology revolutionized agriculture twice in the 20th century. The tractor and other machines caused the first. Nitrogen and other chemicals were responsible for the second. The third agricultural revolution is coming from information. What do the past and future agricultural revolutions mean for land?
US farmers, by raising grain yields, have spared about 150 million hectares since 1940 from what otherwise would have been needed: an area 3 times the size of Spain. Alternately, compare a US city of 500,000 people in 2000 and the same city of 500,000 people with the 2000 diet and the yields of 1920. Farming as Americans did 80 years earlier while eating as we do now would require 4 times as much land, about 450,000 hectares instead of 110,000. Looking to a US 70 years hence with 100 million more people and the 2000 diet, farmers will spare 4 times the area of Iowa or more than one Spain if they lift yields only 1%/yr.
What is the global outlook for restoration? If the world farmer reaches the average yield of today’s US corn grower during the next 70 years, ten billion people eating as people now on average do will need only half of today’s cropland. The land spared exceeds Amazonia. This will happen if farmers sustain the yearly 2% worldwide yield growth of grains achieved since 1960, in other words if social learning continues as usual. If the rate falls by one half, an area the size of India, globally, can still revert from agriculture to woodland or other uses. If the ten billion in 2070 prefer a meaty diet of 6,000 primary calories/day for food and fuel (twice today’s average primary calories), they roughly halve the land spared. A cautious global scenario of sustained yield growth and more calories still offers more than 10% of present world farmland, more than 10 Iowas or 3 Spains, for the Great Restoration.[7]
Seas
I have spoken about logging and farming the land well enough to spare habitat for nature. What about farming fish to spare fishes? Fishes here refer to cod but also other marine species from abalone to whales.
One compelling estimate of the consequences of fishing rather than farming the ocean: fish biomass in intensively exploited fisheries appears to be about 1/10th the level of the fish in those seas a few decades or hundred years ago. Diverse observations support this estimate. For example, the diaries of early European settlers describe marvelous fish sizes and abundance off New England in the 1600s. From Scotland to Japan, commercial records document enormous catches with simple equipment during many centuries. Even now, when fishers discover and begin fishing new places, they record easy and abundant catches, for example, of orange roughy on Pacific sea mounts. Also traditional scientific surveys of fish stocks indicate fewer and fewer spawning fish (mothers) compared to recruits, (their offspring). The ratio of spawners to recruits has fallen to 20% and even to 5% of its level when surveys began. Reasons abound to spare the sea as well as the land.
People know how to spare land’s animals. Many thousands of years ago our ancestors sharpened sticks and began hunting. They probably extinguished a few species, such as woolly mammoths, and had they kept on hunting, they might have extinguished many more. Then, ten thousand years ago our ancestors began sparing land animals by domesticating cows, pigs, goats, and sheep. By herding rather than hunting animals, humans began sparing wild animals, that is, nature. Today an average American annually eats 53 kgs of pork, beef, and lamb without hunting any of nature’s animals.[8] Americans also eat 27 kgs of poultry without endangering songbirds and consume 14 kgs of eggs without robbing ducks’ nests. Americans drink 266 kgs of milk in glasses or eat the equivalent cheese and ice cream without depriving calves of their mother’s milk.
In addition to the hundreds of kgs of meat and milk from the farmers on land, an American also eats meat from the fishers of the sea, but relatively little, only about 7 kgs in a year. Much of that 7 kgs, however, is taken from the wild schools of the sea, and that fraction of total diet, though small, depletes the oceans.
What does the world eat? In a year it now eats some 74 million tons of pigs; 50 of beef; and 12 of buffalo, goats, and sheep. It eats 186 million tons of poultry and 38 of eggs. Adding about 450 million tons of milk pushes the total over 800 million tons. How does world consumption of fish that depletes the oceans compare to the 800? About 80 million tons of fish are taken wild from the sea and 20 from fish farms and ranches. Although the world eats relatively more fish than Americans, the world consumption of 80 million tons of fish from the sea that depletes the oceans is still small compared to the consumption of over 800 from domesticated animals, a consumption that does not kill wild mammals or birds.
The ancient sparing of land animals by farming shows us how to spare the fish in the sea. We need to raise the share we farm and lower the share we catch.
Fish farming does not require invention. It has been around for a long time. The Chinese have been doing very nicely raising herbivores, such as carp, for centuries.
Following the Chinese example, one feeds crops grown on land by farmers to herbivorous fish in ponds. Much aquaculture of catfish near the Gulf Coast of the US and of carp and tilapia in Southeast Asia and the Philippines takes this form. The fish grown in the ponds spare fish from the ocean. Like poultry, fish efficiently convert protein in feed to protein in meat. And because the fish do not have to stand, they convert calories in feed into meat even more efficiently than poultry.[9] All the improvements such as breeding and disease control that have made poultry production more efficient can be and have been applied to aquaculture, improving the conversion of feed to meat and sparing wild fish.
Ponds are not the only arenas of aquaculture. Another form might be called fish ranching. An analogy of fish ranching might be grazing pigs. Running wild, about 10 hogs can share a hectare. Running wild, today’s world population of one billion hogs alone would require about one hundred million hectares, more than 1/5 the land of the USA. Running wild, growing herds denude landscapes. To decouple animal agriculture from damaging the land, farmers instead grow high yields of crops, such as corn and soybeans, to feed the animals.
In some fish ranching, notably most of today’s ranching of salmon, the salmon effectively graze the oceans, as the razorback hogs of a primitive farmer would graze the oak woods. Such aquaculture consists of catching wild “junk” fish or their oil to feed to our herds, such as salmon in pens. We change the form of the fish, adding economic value, but do not address the fundamental question of the tons of stocks. A shift from this ocean ranching and grazing to true farming of parts of the ocean can spare others from the present, on-going depletion.
I have already described fish farming in ponds. With due care for effluents, pathogens, and other concerns, this model can multiply many times in tonnage. In fact, with neatly closed systems on land the model is identical to much clean manufacturing except the machines are biological. Eventually we might grow fish in closed silos at high density, feeding them proteins made by micro-organisms grown on hydrogen, nitrogen, and carbon. The fish could be sturgeon filled with caviar.
The riskier and fascinating alternative, ocean farming, would actually lift life in the oceans. The oceans vary vastly in their present productivity. In many parts of the ocean crystal clear water enable a person to see 50 meters down. These are deserts. In a few garden areas, where one can see only a meter or so, life abounds. Water rich in iron, phosphorus, trace metals, silica, and nitrate makes these gardens dense with plants and animals. The “IronEx”periments of the 1990s demonstrated the extraordinary leverage of iron to make the oceans bloom.[10]
The meat productivity depends on two factors: the supply of food for fish (or shrimp, squid, or other eaters) in the garden and how efficiently the fish convert the food into meat. First consider the yield of fish food. Oceanographers estimate that as much as 60% of ocean life grows in 2% of the ocean surface. Production on average would then be more than 70 times as great in the 2% garden areas as in the 98% desert. In principle, fertilizing a nutrient-poor tropical ocean desert to the condition of, say, the Peruvian upwelling, could increase plant or phytoplankton yield more than 70 times to feed more fish.
The second factor setting productivity is the efficiency of turning phytoplankton into meat. The efficiency with which a kilogram of fish or other popular seafood emerges from a kilogram of phytoplankton depends both on the number of intermediaries or trophic levels in the system and on the conversion efficiency at each level. The range spans from a low of about 2% in the ocean deserts to 25% or more in the Peruvian upwelling and temperate shelf gardens, such as Georges Bank.[11] The difference between one hundred kilos of phytoplankton becoming 2 kgs of fish in the desert and 25 kgs in the garden is more than dozen-fold.
In the end to consider the potential of ocean farming we must multiply the potential changes in supply of food for fish by the potential changes in efficiency. If the garden can produce 70 times as much food for fish per hectare and can turn it into fish a dozen times more efficiently, an oceanic garden is potentially hundreds of times as productive as the oceanic desert. That is, adding the right nutrients in the right places might lift fish yields by a factor of hundreds. This is the way higher yields of crops per hectare and more productive farm animals have shrunken the area farmers must till to feed the world. And so spared land for nature.
Challenges abound because the ocean moves and mixes, both vertically and horizontally. Nevertheless, technically and economically promising proposals exist for farming on a large scale in the open ocean with fertilization in deep water. (The deep ocean currents can process the resulting rain of organic materials without becoming anoxic.) One kg of buoyant fertilizer, mainly iron with some phosphate, could produce a few thousand tons of biomass.[12]
Stimulating the growth of marine plants is the crucial first step to greater productivity. Zooplankton then graze on phytoplankton and the food chain continues until the sea teems with diverse life. Fertilizing 250,000 sq km of barren tropical ocean, the size of Colorado or about 3 times the Gulf of Maine, in principle might produce a catch matching today’s fish market of 100 million tons. Colorado is less than 1/10th of 1% of the world ocean. Along with its iron supplement, such an ocean farm would annually require about 4 million tons of nitrogen fertilizer, 1/20th of the synthetic fertilizers used by all land farms.
Still another proposition would turn a problem into an opportunity. Some scientists are decrying the leaking of plant nutrients from cities and farms into estuaries and gulfs. They worry that the decay of organisms encouraged by these nutrients will consume the oxygen in the water and smother fish. In these places where nutrients are considered a problem, why not turn the nutrients into an opportunity by learning how to grow and harvest fish in those waters to relieve what we now call pollution and lessen the demand to fish elsewhere?
The point is that the high levels of harvest of wild fishes and destruction of marine habitat to capture them need not continue. The 20% of seafood already raised by aquaculture signals the potential for Reversal. Following the example of farmers who spare land and wildlife by raising yields on land, we can concentrate our fishing in highly productive, closed systems on land and in a few highly productive ocean farms. Ecological engineers can tailor closed systems to grow the particular, tasty, high-priced species. Innovative ocean farmers can make fish cakes in bulk. Humanity can act to restore the seas, and thus also preserve traditional fishing where communities value it. With smart aquaculture, we can multiply life in the oceans while feeding humanity and restoring nature.
Conclusion
The logic for Reversal and Restoration is obvious and deep. Intelligent humanity made revolutions in productivity sweep all industries in the 20th century. We now stamp out cars like tin ducks and microchips too. Unnoticed by many, revolutions in productivity also penetrated forestry and farming. Combined with more efficient production chains and changes in consumer taste, rising yields began to allow us to meet demand for food, fiber, and fuel while using less land: the Great Reversal. The enlarging forests and abandoned farms in the US and in many other nations show it.
Because cities will take a few hundred million hectares more land for the 10 billion people of 2070, we need the Reversal to spread to more nations and for it to extend into a Great Restoration. In the US, foresters may offer 70 million hectares for nature and farmers that much or more. The net effect should be to allow a restoration of nature on land in the US exceeding the size of 100 Yellowstone National Parks or twice the area of Spain. Regional and national case studies could build a global picture. Reflecting the diffusion of productivity through industries around the world, the Great Reversal will surely happen at different times in different places and with different potential. Setting goals, such as a 300 million hectare or 10% expansion of the world’s forest area by 2070, may help.
Accomplishing the Great Restoration is the work of the 21st century for foresters, farmers, scientists, engineers, and all the other participants in the wood and food businesses. While avoiding the dangers of intensive cultivation, wise humanity can lift average yields toward the present limits and lift the limits even more. By sparing cropland, we can also spare water and nitrogen.
In the seas, the Reversal still lies ahead, but we can glimpse it. Fishers and all those who depend on the preservation of marine life must hasten its arrival and solve the many problems on the way to Restoration.
Consumers, of course, can also do their share. Changing tastes can lessen our demands on nature. For those who choose it, a vegetarian diet roughly halves land used for food. Drinking diet cola rather than apple juice, we need no land at all.
However tastes may evolve, high yields are the best friend of habitat. Recalling Gertrude Stein’s remark, the decoupling of the economy from acreage, well on its way for fifty years in the USA, creates nature’s chance to restore land and sea.
Acknowledgements: Michael Markels, Perrin Meyer, Paul Waggoner, Brian Walker, and Iddo Wernick.
Figure 1. First Picture – Reversal and restoration of USA forests. Second Figure – U.S. Forest Land Area 1630-1997.
Sources of data: Sedjo (1995); Powell et al (1993). Inset: U.S. Forest Volume, Hardwoods and Softwoods, 1952-1997. Sources of data: Smith et al., 1994; Smith, 1999.
References for sources of data:
DS Powell, JL Faulkner, DR DARR, Z Zhu, and DW MacCleery. 1993. Forest Resources of the United States, 1992. USDA. Forest Service Report RM-GTR-234.
RA Sedjo. 1995. “Forests: Conflicting Signals,” in The True State of the Planet, edited
By R Bailey. New York: Free Press.
WB Smith, JL Faulkner, and DS Powell. 1994. “Forest Statistics of the United States, 1992,” USDA Forest Service Report GTR-NC-168.
Smith WB. 1997 RPA Assessment: The United States Forest Resource Current Situation. USDA Forest Service, Washington DC, 1999.
Figure 2. Reversal in area of land used to feed a person. After gradually increasing for centuries, the worldwide area of cropland per person began dropping steeply in about 1950, when yields per hectare began to climb. The square shows the area needed by the Iowa Master Corn Grower of 1999 to supply one person a year’s worth of calories. The dotted line shows how sustaining the lifting of average yields 2 percent per year extends the reversal.
Sources of data:
Food and Agriculture Organization of the United Nations, various Yearbooks.
National Corn Growers Association, National Corngrowers Association Announces 1999 Corn Yield Contest Winners, Hot Off the Cob, St. Louis MO, 15 December 1999 ;
JF Richards. 1990. “Land Transformations,” In The Earth as Transformed by Human Action, BL Turner II et al. eds., Cambridge University: Cambridge, UK.
Figure 3. Reversal in total U.S. Water Use, Per Capita, Per Day.
Sources of data:
U.S Bureau of the Census. 1975. Historical Statistics of the United States, Colonial Times to 1970. Washington, DC: U.S. GPO.
U.S Bureau of the Census. 1998. Statistical Abstract of the United States: 1998. (118th edition.) Washington, DC.
[1] Ausubel JH. For a discussion covering energy, materials, and other aspects along with land use see The Liberation of the Environment. Daedalus 1996;125(3):1-17.
[4] UN-ECE/FAO. Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/boreal countries), contribution to the Global Forest Resources Assessment 2000. United Nations, New York, in press.
[5] Sedjo RA, Botkin D. Using Forest Plantations to Spare Natural Forests. Environment 1997;39(10): 14-20 and 30.
[6] National Corn Growers Association, National Corngrowers Association Announces 1999 Corn Yield Contest Winners, Hot Off the Cob, St. Louis MO, 15 December 1999 ; on line at https://www.ncga.com/archives/news991215.html
[8] US Department of Agriculture, Agriculture Statistics. Washington DC, 1990, p. 471.
[9] Lovell T. Nutrition and Feeding of Fish, Van Nostrand Reinhold, New York, 1989. p. 6: Weight gain/g food, protein gain/g protein as follows: channel catfish 0.84, 0.36; broilers 0.48, 0.33; beef 0.13, 0.15.
[10] Martin JH et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 1994; 371:123-129.
[11] Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature 1995; 374:255-257
[12] Markels, Jr., M. Method of improving production of seafood. US Patent 5,433,173, July 18, 1995, Washington DC.
Iddo K. Wernick and Jesse H. Ausubel Program for the Human Environment, The Rockefeller University with the Vishnu Group for the Office of Energy and Environmental Systems, Lawrence Livermore National Laboratory
ISBN 0-9646419-0-7
Vishnu Group David T. Allen, University of Texas at Austin Braden R. Allenby, Lawrence Livermore National Laboratory and the AT&T Corporation Jesse H. Ausubel, The Rockefeller University Robert U. Ayres, European Institute of Business Administration R. Darryl Banks, World Resources Institute Faye Duchin, Rensselaer Polytechnic Institute John R. Ehrenfeld, Massachusetts Institute of Technology Peter M. Eisenberger, Columbia University Reid Lifset, Yale University Robert A. Frosch, Harvard University Thomas E. Graedel, Yale University Bruce R. Guile, Washington Advisory Group David Rejeski, Office of Science and Technology Policy Deanna J. Richards, National Academy of Engineering Robert H. Socolow, Princeton University Iddo K. Wernick, The Rockefeller University
Foreword
The recent diffusion of the term “industrial ecology” stems from its use by physicist Robert Frosch in a paper on environmentally favorable strategies for manufacturing co-authored with Nicholas Gallopolous published in September 1989 in Scientific American. Frosch embraced the concept of “industrial metabolism” which Robert Ayres has developed to organize thinking about the massive, systematic transformations of materials in modern economies. Industrial metabolism as well as dematerialization (the diminishing amount of material required for a good or service) had been explored at an August 1988 workshop of the National Academy of Engineering chaired by Frosch (Ausubel and Sladovich, 1988). Frosch sought a term that conveyed not only the sense of transformation but also the networks of actors doing the producing and consuming – or disposal – of materials and associated energy.
The new term resonated. The National Academy of Sciences, in association with the AT&T Corporation, convened a “Colloquium on Industrial Ecology” chaired by Kumar Patel in May of 1991 to consider the subject more fully. The Colloquium addressed optimization of the total materials cycle, from virgin to finished material, including components, products, waste products, and ultimate disposal (PNAS 89(3), 793-884, 1992).
During the past few years, a growing number of researchers as well as practicing engineers and managers have been attracted to “industrial ecology.” The term appears to offer a framework within which to improve knowledge and decisions about materials use, waste reduction, and pollution prevention. Some dozen workshops, many organized by NAE, have explicitly addressed aspects of industrial ecology. These include applicability in selected manufacturing sectors, applicability in services industries, environmentally symbiotic co-location of industries, comparative experiences in different nations, relationship to global environmental problems, and performance measures. Braden Allenby and Thomas Graedel codified much of the early knowledge in a 1995 textbook. Several universities and other research institutions now have courses or programs in industrial ecology. The U.S. government’s National Environmental Technology Strategy endorsed the concept. A Journal of Industrial Ecology has been established as well as a fellowship program. Swiss journalist Suren Erkman (serkman@mail.vtx.ch) has built a database of relevant publications containing over one thousand items. Popular articles have appeared in newspapers and magazines, and even a sociological review (O’Rourke et al, 1996) .
Of course, no subject is wholly new, and antecedents have been traced. Importantly, individuals with similar and related interests in numerous countries have joined the discussion.
In this period of maturation, a group of us who have participated in the growth of industrial ecology (calling ourselves the Vishnu Group, for the Hindu deity embodying preservation) agreed in December of 1995 that it could be useful to outline research directions for the field. Notwithstanding the existence of much research planning in fields of environmental science and technology, we found little language that addressed the needs we see. The interest of the US Department of Energy, and Lawrence Livermore National Laboratory in particular, to learn more about industrial ecology provided the occasion and generated the needed financial support. The Program for the Human Environment at The Rockefeller University agreed to serve as the hub for the activity. We met twice as a group and interacted extensively in smaller meetings and through telecommunications. Iddo Wernick took the lead in drafting the report.
We speak about issues and problems rather than disciplines. We believe people with diverse backgrounds, skills, and specialized knowledge from physical and life sciences, engineering, and social sciences as well as industrial practice will all contribute to the advancement of industrial ecology. Many of the problems will benefit from analysis by teams combining fields of expertise. Universities, government laboratories, and both for-profit and not-for-profit private sector research groups may all find areas appropriate for their labors.
We are well aware that researchers are conducting a considerable amount of high-quality, relevant work in Austria, Canada, Denmark, Netherlands, Japan, Germany, Italy, Switzerland and other countries. Although some of this is represented in the bibliography, we have not had the time or means to carry out a systematic global survey. We have tried to identify directions that soundly reflect the mix of industries and environmental issues that characterize the United States. We have yet to estimate the costs in human effort or dollars of the research envisioned. An obvious next step is to make such an assessment and to search for bargains.
We are grateful to numerous individuals for materials, comments, and suggestions. These include Stefan Anderberg (IIASA), David Berry (President’s Council on Environmental Quality), Raymond Cote (Dalhousie), Richard Dennison (Environmental Defense Fund), Peter Eisenberger (Columbia University), Suren Erkman (Geneva), Gregory Eyring (formerly US Office of Technology Assessment), Peter Ince (USDA Forest Service), Greg Keoleian (Michigan), Catherine Koshland (U. of California, Berkeley), Roberto Galli (Milan), Grecia Matos (Department of Interior), Donald Rogich (formerly US Bureau of Mines), Thomas Schneider (EPRI), Walter Stahel (Geneva), William Stigliani (IIASA & U. of Northern Iowa), Valerie Thomas (Princeton), and Paul Waggoner (Connecticut Agricultural Experiment Station). Karen Blades, Michael Fluss, T. J. Gilmartin,John Tennyson, and several of their colleagues Lawrence Livermore assisted on both substantive and practical matters. We all owe a debt of gratitude to Braden Allenby, whose energy, scope, and determination account for much of the development of industrial ecology in general and this report in particular.
Jesse H. Ausubel
Director, Program for the Human Environment
PREFACE
Among the goals of industry must be the preservation and enhancement of the environment. Anticipating a world with more industrial activity, we must find ways to make large improvements in the totality of industrial interactions with the environment. Each corporation may see incentives to better its individual environmental performance. Consideration of the collective performance of an economy is necessarily a public function. A broad view is needed, for example, to encourage waste minimization as a property of the industrial system even when it is not completely a property of an individual process, plant, or industry. Much of the research and understanding that underlie such a system must also be of a public and open character.
The energy sector is the largest handler of materials in the economy. Current annual global emissions of carbon, our main fuel, are about 6 billion tons, or more than 1,000 kilograms per person on the planet. In comparison, the global steel industry annually produces about 700 million tons, or about 120 kilograms per person. Energy, of course, also interacts with every other industry, ranging from cars and chemicals to paper and electronics. For these and other urgent reasons, the energy sector and the US Department of Energy have thus had a long-standing and growing interest in how industry can be more safely and cleanly embedded in the environment.
The commitment of the US government to more effective, long-term approaches to environmental quality has been reiterated and elaborated in such recent reports as Technology for a Sustainable Future (National Science and Technology Council, 1994) and the 1996 report of the President’s Commission on Sustainable Development. The 1995 report on Alternative Futures for the Department of Energy National Laboratories prepared by the Advisory Board of the Secretary of Energy (Galvin Committee) pointed out that the laboratories have areas of demonstrated expertise that could provide the basis for an expanded mission in environmental research and technology development.
In the spirit of these deliberations, the Office of Energy and Environmental Systems of the Lawrence Livermore National Laboratory concluded it would be useful to learn more about the promising directions for research in the emerging field of industrial ecology. We received encouragement in this regard from our colleagues elsewhere in the Department of Energy as well as from other federal mission agencies and the White House. We hope that this report will now helpfully stimulate not only the performers and sponsors of research within the DOE, but thoughout the government and in industry and academia as well.
Phrases such as “sustainable development” will remain little more than slogans unless disciplines such as industrial ecology can provide operational concepts that improve both the economy and the environment.
Braden R. Allenby
Director, Office of Energy and Environmental Systems, Lawrence Livermore National Laboratory (1994-1996)
Vice President for Environment, Safety, and Health, AT&T
Annotated Table of Contents
I. INTRODUCTION
The Goal and the Role – Lightening environmental impact per person and per dollar of economic activity, the search for leverage
How Industrial Ecology Got Its Name – Application of ecological theory to industrial systems
II. MEANS and MEASURES
a) Candidates for Lessening Impacts
Zero Emission Systems – Leaky and looped systems, plausible future scenarios
Materials Substitution – Evolution of materials use as it effects the environment, the role of changes in material properties, time scales of change
Dematerialization – Conceptual development and testing, complementary concept of decarbonization
Functionality Economy – Frameworks and opportunities for emphasizing services over goods
b) Methods for discovering and measuring progress
Materials Flow and Balance Analysis – Materials accounting for analysis of industrial ecosystems at several levels (firm, sector, region, nation, globe), elemental studies, input-output frameworks
Life Cycles of Products – Alternative methods for Life Cycle Analysis, difficulties, needs
Indicators – Assessing environmental performance at the national, regional, sectoral, and firm levels; waste-to-product ratios, circulation measures, loss rates, intensity measures
Discovering dynamics in history – Dynamics and trajectories of materials use in the economy, long term effects of technology-environment interactions, rates and trajectories of technological evolution
International Comparisons – Practices in different countries, possibilities for transfer of concepts and strategies
III. IMPLEMENTING INDUSTRIAL ECOLOGY
a) The Material Basis
Choosing the Material – Designing materials for recycling/reuse; improving materials processing technologies; information to reduce resource use and waste generation
Designing the Product – Designing products for recycling/reuse; case studies
Recovering the Material – Separation based on physical and chemical properties; extracting metals from wastes; recovering chemicals and solvents from wastes; recycling and reusing high-volume industrial wastes
Monitoring and Sensing Technology – Tracking of materials and wastes
b) Institutional Barriers and Incentives
Market and Informational -Waste markets and exchanges, information needs, scale of agglomeration, price/cost issues
Business and Financial – Roles of private firms and corporate organization in decisions affecting environmental performance, linking IE to quality, accounting, flows of information; service and non-profit sectors
Regulatory – Effects of current regulatory structures (federal, state, local, international) on the recovery and transport of industrial wastes; reforms to favor more desirable industrial ecosystems; takeback legislation
Legal – Role of civil liability in facilitating or hampering the recovery of industrial wastes; reforms to favor innovation in industrial ecosystems, anti-trust, consumer protection, international trade, government procurement
c) Regional Strategies and Experiments – Geographic, economic, political and other factors affecting regional industrial networks; industrial symbioses (EcoParks)
IV. CONCLUSION
V. BIBLIOGRAPHY
VI. DATA SOURCES, JOURNALS, AND WEB RESOURCES
VII. BIOGRAPHICAL INFORMATION
FIGURES
1. Mass balance of an element: The case of chlorine
2. Regional materials flow: The non-ferrous metals industry in New England
3. Material flow in an industrial sector: The case of forest products
4. Evolution of end uses of cadmium
5. Wastes or ore bodies? Metallic waste streams assessed against price (Sherwood Plot)
6. Symbiosis of industrial facilities: The Kalundborg ecopark
4. Life cycle analysis: Comparing a 1950s and a 1990s car
I. INTRODUCTION
The Goal and the Role
If humanity grows in number and wealth yet tries to meet its desires for goods and services only in the same ways we do today, we will surely suffer from a badly polluted environment. If technology and the organization of economic activity stagnate, pollution will multiply. Fortunately, the historical record shows some hope that people can change their ways and lessen their impact on the environment while wealth increases. In fact, wealth pays for the innovations that can lessen our impact.
The role of Industrial Ecology (IE) is to learn about the levers for lightening the impact on the environment of each person and each dollar of economic activity. This report sets out how diverse engineers, scientists, and investigators and practitioners in other fields can learn where some of the levers are, how they work, and how they might be improved and used.
IE accepts as givens population and income. Industrial ecologists listen to demographers, experts in economic development, and others for definition of the dimensions of the challenge to be addressed. For example, if the US population rises from its present level of about 260 million to 400 million in the year 2100 and the economy doubles per capita roughly every 30 years, as it has since the year 1800 in the industrialized countries, the United States would have more than 12 times today’s emissions, other things being equal. To enhance environmental quality over the next century in this scenario, the annual cleaning of the US economy needs to exceed 2.5 percent. It is the job of American industrial ecologists to exceed 2.5 percent.
To do our job of minimizing waste and thus harmful exposures, various forms of environmental disturbance, and inefficiency, industrial ecologists examine such factors as choices of raw material, the intensity and efficiency of use of materials, and fates of materials. We focus on technical aspects of a particular set of links in the chain of economic activity, while recognizing the value of other social and behavioral approaches to improving the human environment as well. We believe research is a gilt-edged investment to fulfill the stated contract of industrial ecology.
A recognizable body of IE research has emerged in recent years. This includes comprehensive accounts of the flow of selected materials in the economy, descriptions of the environmental dimensions of industrial systems as distinct from their artifacts, means for analysis and design of environmentally benign systems as well as artifacts, and alternatives to disposal for various wastes.
This report categorizes some of the main directions for research for IE and specifies avenues of inquiry. To view IE, we first talk about its fundamental means, the candidate ways for lessening impacts. These include industrial systems conceived to approach zero emissions, the substitution of materials with superior environmental performance, “dematerialization” or reduced intensity of use of materials, and reconceptualization of the economy to emphasize functions, i.e., services over goods. Then we discuss the measures for discovering and quantifying progress. These include materials accounting frameworks, analyses of the life cycles of products, indicators, and historical and comparative studies to discover dynamics and tendencies. Subsequently we discuss research aimed at implementation of IE, first through the technical means to advance the material basis of the economy and then through institutional means, including informational, financial, regulatory, and legal, as well as regional strategies. Works listed in the accompanying bibliography provide background and examples for each section.
Before turning to the practical core of our report, we comment briefly on the conceptual premise of industrial ecology, which itself merits research.
How Industrial Ecology Got Its Name
The name or phrase “industrial ecology” prima facie implies that models of non-human biological systems and their interactions in nature are instructive for industrial systems that we design and operate. What makes the biological model attractive? Foremost is the cleverness with which evolution has developed things to live off the bodies and wastes of one another. Additionally, during the past few decades ecologists appear to have developed some skill at understanding systems by analyzing or depicting their flows and cycles of materials and energy.
A more problematic question is efficiency. Ecosystems are not necessarily exemplars of efficiency. Even the most efficient ecosystem, say, a corn field, captures only about 5 percent of solar energy as the product of photosynthate. In the summertime, most of the energy overheats the plant or evaporates water that the plant needs to keep turgid. In a mature, stagnating forest (likely to please the eyes of a naturalist), decay returns the CO2 in the photosynthate to the air, making the efficiency zero.
The proposition that industrial systems may be beneficially viewed as ecosystems merits critical probing. An early step is simply to articulate a vocabulary matching or accommodating different morphologies. Research should also explore the applicability to industry of ecology’s concepts (adaptive pathways, food webs, limiting factors, energy and material budgets) and rules (e.g., Cope’s rule that increase in body size confers adaptive advantages, the least work principle). Also valuable might be an exploration of the properties that favor ecosystem resilience, and what these suggest for the design of industrial networks. For an introduction to the ecological analogy, see Graedel, T.E., 1996, On the Concept of Industrial Ecology, Annual Review of Energy and Environment, Volume 21; Allenby, B.R. and Cooper, W.E., 1994, Understanding Industrial Ecology from a Biological Systems Perspective, Total Quality Environmental Management, Spring 1994 pp. 343-354.
Over the long run, industrial ecology is a good name for the discipline we have in mind only if there is merit to, and insight from, the analogy, not because it connotes an environmentally friendly industry.
II. MEANS AND MEASURES
Candidates for Lessening Impacts
Zero Emission Systems
An overarching goal of IE is the establishment of an industrial system that cycles virtually all of the materials it uses and releases a minimal amount of waste to the environment. Theoretically, the developmental path to such an end state follows an orderly progression from what Allenby and Graedel call Type I, II, and III systems. Type I systems require a high throughput of energy and materials to function and exhibit little or no resource recovery. Type II systems represent a transitional stage where resource recovery becomes more integral to the workings of the system but do not satisfy its requirements for resources. The final stage, the Type III system, cycles all of the material outputs of production, though still relying on external energy inputs.
Research is needed to elaborate this vision of future industrial ecosystems that are looped rather than leaky and to develop dynamic scenarios of how to achieve it technologically, at various levels of economic activity and population. Achieving it means that part of IE is a systematic search for leverage.
The research must especially consider basic industries (such as those providing energy, food, shelter, transport, as well as services) that currently rely on the vast mobilization of material resources. Fundamentally, this effort involves the search for alternatives to present systems that incorporate technologies that limit initial resource requirements and generate and recover usable waste products. The most developed thinking about zero emissions has occurred in the context of energy systems, particularly in relation to the use of hydrogen as an energy carrier. Recent attention has focused on electric cars as zero-emission vehicles and the larger question of the energy and material system in which the vehicles are embedded. Classic studies about hydrogen energy might be revisited and extended in the context of industrial ecology (Gregory, D.P., 1973, A hydrogen-energy system, L21173, American Gas Association, Washington DC). See Hafele, W., Barnert H., Messner, S., Strubegger, M., and Anderer, J., 1986, Novel Integrated Energy Systems: The case of zero emissions, pp. 171-193 in Clark, W.C. and Munns, R.E., eds., Sustainable Development of the Biosphere, Cambridge University Press, Cambridge, U.K.
Material Substitution
The goal of minimizing waste may be reached by the leap of using a wholly new material for a purpose rather than refining the processing of an old material. The new material should perform the function longer, be processed less wastefully, or be acquired with less waste. Widespread examples of materials substitution include metals for wood, aluminum for steel, and high carbon steel for other steels, and, more specifically, steel for rayon in tires and plastics for glass in beverage containers. Historically, many of the substitutions have been alloyed blessings, bringing new environmental problems as well as reducing old ones.
Research is needed to understand the evolving consumption levels and applications of the materials used to provide various economic functions, the physical and chemical properties (e.g., strength-to-weight ratio, corrosibility, toughness, thermal stability) that motivate the selection of one material over another, and the time scales necessary for the substitution of materials by superior competitors. The purpose of the research would be to identify the materials for which we should most actively seek substitutes, the most promising alternatives, and the feasible time scales to effect substitution.
Dematerialization
Materials substitution is considered a principal factor in the theory of dematerialization. The theory asserts that as a nation becomes more affluent the mass of materials required to satisfy new or growing economic functions diminishes over time. The complementary concept of decarbonization, or the diminishing mass of carbon released per unit of energy production over time, is both more readily examined and has been amply demonstrated by researchers over the past two decades. For materials in general, several forms of innovation (more efficient recovery of minerals and metals from crude ores, imbuing materials with improved properties per unit mass; and better societal mechanisms for handling and reusing wastes) drive this purported phenomenon. Dematerialization is advantageous only if using less stuff accompanies or at least leaves unchanged lifetime, waste in processing, and waste in acquistion.
Despite the collection of multiple anecdotes to support the dematerialization hypothesis few studies have offered a systematic approach for testing it. Research is needed to both advance the theoretical framework for dematerialization and for identifying the means to validate it. For a presentation of the dematerialization hypothesis see Bernardini, O., and Galli, R., Dematerialization: Long Term Trends in the Intensity of Use of Materials and Energy, Futures, May 1993, pp. 431-48 (1993); See also Wernick, I.K., Herman, R., Govind, S., Ausubel, J.H., Materialization and Dematerialization: Measures and Trends, Daedalus 125(3):171-198.
Functionality Economy
An interoffice envelope can carry a new address and a new message, but carries many messages before the space for addresses is filled. One cathode ray tube or flat screen display can convey countless messages. From the viewpoint of IE, products represent a means for serving a particular function to the consumer. A shift in the prevalent attitude of managers, engineers, and public officials from viewing products as endpoints in themselves to seeing them as providing functions to end users could translate to wholesale reductions in national resource use and diminished waste streams.
For example, in this view one does not purchase an automobile but rather the function of transporting passengers and goods. As a result the manufacturer does not relinquish prime ownership of the vehicle at any time and must reassume possession at the end of the vehicle’s useful life. This arrangement provides strong incentive to design the vehicle for extended useful life and maximum recoverable value after use. The proliferation of cheap telephones with short service lives provides a counter example where the end of a decades-long leasing arrangement for telephones has led to a new source of municipal solid waste and significantly increased the number of devices manufactured.
Due to the incentive to extend product life the planned obsolescence of products could itself become obsolete as the acquisition of a physical object would be subordinate to the purchase of the function it provides. Research is needed to examine the most promising industries in the economy where this view may yield fruitful results. Further research is then needed to design the economic, regulatory, and legal systems necessary to introduce such `function as product’ arrangements in the broader marketplace. The functionality economy substantially redefines industrial activity, with particularly profound implications for manufacturing concerns. For an introduction to this topic see Stahel W. R., The Utilization-Focused Service Economy: Efficiency and Product-Life Extension, pp. 178-190 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds, 1994.
Methods for Discovering and Measuring Progress
Three analytical methods for finding leverage suggest themselves. The first maps the flow of a material such as lead through the nation’s industry, a sector, and even an individual firm. This mapping resembles the analysis of the dollars or energy in an economy. The second follows a product through its life from assembly to junk yard (and beyond) and encompasses all the material in it. The third examines the course of, say, iron per dollar of GDP, to learn whether a society is approaching or retreating from IE’s goal of lightening the environmental impact per person and per dollar.
Materials Flow and Balance Analysis
Understanding the structure and environmental effects of industrial systems requires a knowledge of their anatomy and physiology. Materials flow studies reveal structure, and webs of economic and material relationships among actors, in the industrial system as they map the flow of natural resources into processing and manufacturing industries and the fate of products and wastes exiting them. The object for study can be the mass of individual chemical elements, compounds, or entire classes of materials. The framework for such studies include individual facilities, whole industrial sectors, and geographic regions.
Currently much of the challenge in constructing materials flow accounts at all levels lies in the absence of organized data sets. In many cases the data are collected but effort is necessary to compile data from many sources into a useful form. In other cases the data simply do not exist.
Much effort has been made to detail the mass flows of carbon, nitrogen, sulfur, and phosphorus. Their role in the biogeochemical functioning of the planet attaches importance to changes in their concentration in environmental media and their biological availability. In addition to the enormous volume of these elements cycling in the biosphere, their environmental significance depends strongly on their chemical form. Despite decades of effort researchers have yet to arrive at a full understanding of the natural sources and sinks of these elements and the precise impact of anthropogenic perturbations to the cycle. Still, IE can learn from our understanding of the global sources and sinks, including anthropogenic ones, for these elements, and their transport through environmental media, and seek to contribute practical opportunities for reducing human perturbations to the global system. For example, attractive ideas need to be developed for the industrial recapture of carbon dioxide.
For less ubiquitous elements that carry with them a clearly harmful environmental impact, however, the task of circumscribing the amounts mobilized by natural and human activity and examining their metabolism in the industrial system is more feasible. Mass balance studies must consider the manifold chemical transformations that elements, such as chlorine (1991 US production 10.4 Million Metric Tons (MMT)), undergo in industry. Figure 1 shows a first-order analysis of the industrial metabolism of elemental chlorine in Western Europe in 1992. The complex structure of use of this element in industry highlights the different possible levels of details for mass balance studies.
If the goal is to minimize toxic waste, not just waste, surely the form of the waste ranks with all the other concepts. For example, if we are making poisonous phosgene (COCl2), it matters much whether we emit phosgene or CO2 and NaCl. De-toxifying waste is a pre-eminent engineering task.
Mass flows for elements consumed in far smaller quantities than chlorine, such as cadmium (1993 US consumption 3.1 kMT), can be described more fully due to their smaller volume and relatively limited number of industrial applications. Mass flow analyses for arsenic, cadmium, chromium, cobalt, manganese, mercury, salt, tungsten, vanadium, and zinc are available from the Office of Minerals Information at the US Geological Survey (formerly the Branch of Materials, Division of Mineral Commodities at the US Bureau of Mines) located in Reston, Virginia. These analyses vary in their level of detail and in their environmental, as opposed to economic, relevance. At a minimum however, the studies contain valuable data and provide an excellent base for future studies.
Scanning the periodic table of elements brings into focus the most promising candidates for the development of detailed mass-balance accounts. Toxic elements such as those identified on the Agency for Toxic Substances and Disease Registry (ATSDR) as priority substances for toxic profiles provide some initial guidance in selecting elements for mass-balance accounts. (An element’s LD50, the dosage that will, on average, kill 50% of a group of experimental animalsprovides another possible method for ranking elements by toxicity and is regularly used as a basic toxicity indicator for hazardous chemicals.) Toxic elements enter the environment through industrial activities that deliberately use them for their unique properties and from the processing and thermal treatment of ore and mineral bodies where they occur as trace elements. These are of course prime candidates for an engineer to find substitutions. Other elements and basic minerals to be included on the priority list are those involving large materials and waste flows even if they themselves do not present any acute toxic threat. Table 1 lists some representative metallic elements for which mass balance accounts are most needed along with some of the criteria for their determination.
Consideration of these elements begins with the amount the nations consumes, goes on to how much escapes from processing, and ends with whether the escape matters, the toxicity of the element.
*Wastes values for elements and their compounds For relatively well understood systems, such as single industrial facilities, mass-balance studies rely on the simple, though underutilized, law of conservation of mass. By using available data establishing the mass of either inputs or outputs, the conservation law along with other process information (e.g., chemical reaction rates) allows researchers to construct the other side of the equation. For energy consumption, knowledge of the energy diet of the system under question allows researchers to gauge the amount of energy used for plant operation, embedded in manufactured products, and dissipated as heat.
Another vantage point for assessing materials flows is via industrial sectors. Figure 2 shows a `spaghetti diagram’ indicating both the magnitude and direction of the metals flows for a portion of the non-ferrous metals sector in New England. The data used for the figure are drawn from direct interviews and site visits, official state and federal reports, and telephone questionnaires. Notwithstanding the extensive time and human effort expended, the study was limited both geographically and in the number of facilities examined, demonstrating the difficulty involved in obtaining reliable and accurate waste data. The study also underscores the fact that, when viewed in absolute terms, even small loss rates (around 1% for copper and 5% for lead) translate to significant environmental releases and suggest the need for even more scrutiny when examining larger scale flows where small differences in calculated efficiency can hide or reveal substantial volumes of waste. See Frosch, R.A., Clark, W.C., Crawford, J., Sagar, A., Tschang, T.T. and Weber, A., 1996, The Industrial Ecology of Metals: A reconnaissance, available from the John F. Kennedy School of Government, Harvard University, Cambridge, MA.
For more comprehensive, if less detailed, studies of entire sectors, IE can draw on an analytic base established by United States government departments and agencies. The US Department of Energy’s “Industries of the Future” program focuses on the fundamental materials processing industries of petroleum refining, chemicals, pulp and paper, aluminum and glass, and steel. In addition to being industries with large resource requirements and waste outputs, these industries are considered basic to future national economic health and competitiveness. The US Environmental Protection Agency’s (USEPA) “Common Sense” program looks at automobile manufacturing, computers and electronics, iron and steel, petroleum refining, and the printing industries. In addition to environmental concerns, economics and politics figure prominently in driving the selection of industries for these government programs. Table 2 lists a preliminary selection of industrial sectors (arranged by SIC code), as well as some criteria for determining their priority for IE research.
Consideration of these sectors begins with the amount the nations consumes, goes on to how much escapes from processing, and ends with whether the escape matters, the toxicity of the element.
Table 2.
Sector
Two DigitStandard IndustrialClassification (SIC) Code
1990 Domestic Production est.(106 MT)
1985* Non-Hazardous Waste Generation(106 MT)
1992** TRI Production-related Waste(106 MT)
Chemicals
28
300
1264
9.0
Petroleum
29
360
153
1.3
Primary Metals
33
112
1241
1.8
Electric\Electronic
36
0.4
Pulp & Paper
26
77
2043
1.1
Fabricated Metals
34
0.4
* Waste quantities include water fraction which can exceed 90%.
** Accounts for 84% of total TRI Production-related waste in 1992
The chemical sector stands out in accounting for about the half of the hazardous waste generated in the United States. The performance of detailed mass balance studies for this industrial sector is complicated by the variety of resources used as input materials, the use of intermediate chemicals in production, and the production of outputs that fall under several different SIC codes (e.g., chemicals 28 and petroleum 29) . As a result, environmental analyses of the chemical sector often rely on highly aggregated data and emphasize innovations in processing and other changes in practice that can improve environmental performance. Independent studies have amply shown the gains achievable through better plant maintenance and material substitution among other innovations. For a review of opportunities to improve environmental performance in the chemical industry see D. Allen, The Chemical Industry: Process Changes and the Search for Cleaner Technologies, pp. 233-273 in Reducing Toxics, R. Gottlieb, Ed., Island Press, 1995. For case studies on chemical plants that have reduce waste generation through a series of innovations in practice, materials selection, process modifications, etc. see INFORM, Cutting Chemical Wastes, INFORM, New York, 1985, and INFORM, Environmental Dividends: Cutting More Chemical Wastes, INFORM, New York, 1992.
In contrast to the chemical sector, the forest products sector relies on a highly uniform feed material (i.e., wood) and produces a relatively well defined class of output products. Figure 3 shows a mass flow diagram for the forest product industry for 1993. The flow chart includes both the use of virgin feedstocks as well as streams of residues and recycled materials used in production. For a review of resource efficiency in the forest products sector see Ince, P.J., Recycling of Wood and paper Products in the United States, U.S. Dept. of Agriculture Forest Service, 1994. Such analyses can reveal where leverage lies to reduce draw on the forest, municipal waste, or other environmental concerns. See for example, Wernick, I.K., Waggoner, P.E., and Ausubel, J.H., Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the U.S., Journal of Industrial Ecology 1(3), in press, 1997.
Service sectors account for roughly three quarters of the annual Gross Domestic Product in the US. Though their environmental impact is not commensurate with this economic clout many of the activities associated with the service sector contribute significantly to environmental fallout. Studies of sectors such as health care, wholesale and retail trade, and communications focus on environmentally-important activities that support the provision of services and distribution of goods but are often hidden from the public eye. Studies in this area should assess issues like the transportation networks and energy needs associated with various service industries as well as direct material requirements for equipment ranging from the medical instruments to office paper and their disposal. Service industries can play a strategic environmental role in influencing their materials suppliers to act in an environmentally responsible manner as well as induce consumers to make environmentally responsible choices. Furthermore, a half hour along an interstate reading the signs on the trucks from Ben and Jerry’s to Sears and air conditioning services shows how services dominate the distribution channels. For an example of environmentally oriented management in service industries see Bravo, C.E., 1995, A View of the United States Postal Service as a Service Sector Corporation, presented at the Fourth Annual NAE Workshop on Industrial Ecology, July 5-7, Woods, Hole, MA. Also see Guile, B.R. and Cohon, J.L., 1996, Services and the Environment: More questions than answers, Available from the National Academy of Engineering, Washington, D.C.
Unlike mining and manufacturing industries with visible, and sometimes massive, flows of materials no obvious strategy exists for examining sectors that provide medical services or deliver and sell goods. Research is needed to further develop a conceptual basis for addressing and evaluating the environmental impact of various service industries and to perform sector studies to test their hypotheses. For a rudimentary framework for assessing the environmental impact associated with the provision of services see Schmidt-Bleek, F., 1993, MIPS – A universal ecological measure?, Fresenius Environmental Bulletin 2:306-311.
Materials and energy flows correspond to some degree to money flows. Constructing materials accounts on the model of existing monetary input-output accounts of the economy encourages awareness, and clarifies understanding, of the use of physical resources in the economy, the addition of value to raw materials, and the amounts of waste generated in US industry. Input-output studies attempt to relate the effect of economic growth and technological innovation with the material input and output of economic sectors. One recent study examines the projected use and disposal of plastics in the US by linking a database describing plastics use per unit of sectoral output to an input-output database of the US economy. Expanding this framework to general material use will require researchers to estimate coefficients relating the consumption of specific materials to output across all economic sectors. Using a full set of coefficients, researchers could better estimate the cascade effects of activities, such as materials substitution and the diminished use of a given resource on other sectors and the resulting environmental impact. For an example of an input-output analysis of plastics in the US under different scenarios for consumer recycling see Duchin, F. and Lange, G., 1995, Prospects for the Recycling of Plastics in the United States, Structural Change and Economic Dynamics, July 1995.
Geography-based mass balance studies can encompass localities, regions, and the nation as a whole. Though such studies blur local detail by relying on aggregated data, they can provide usefully comprehensive accounts of resource use and, depending on their scale, better locate the sources and sinks of major materials flows. At the national level, mass-balance studies allow resource managers to gauge the impact of federal policies on national resource use, determine per capita values for resource use, and plan strategically for the future. Research in this area should help clarify the difficulties in obtaining the necessary data for place-based mass-balance studies, including the need for better information on materials origin, identify data gaps, generate taxonomies for classifying resources, and specify the appropriate level of detail for materials accounts. As an example of a national materials account, Table 3 shows an account of materials inputs into the US economy in 1990. Such analyses should, again, help show where to seek leverage for environmental improvement.
Table 3.
MATERIAL GROUP
APPARENTCONSUMPTION (MMT)
TOTAL US (MMT)
PER CAPITA PER DAY (kgs)
Coal
843
Energy
Crude Oil
667
Natural Gas
378
(Petroleum Products)
62
1950
21
Crushed Stone
1092
Construction Minerals
Sand & Gravel
828
Dimension Stone
1
1921
21
Salt
41
Phosphate Rock
40
Clays
39
Industrial Minerals
Industrial Sand & Gravel
25
Gypsum
23
Nitrogen Compounds
17
Lime
16
Sulfur
13
Cement (imported)Other
1224
223
4
Iron & Steel
100
Metals
Aluminum
5
Copper
2
Other
4
111
1
Saw Timber
123
Forestry Products
Pulpwood
73
FuelwoodOther
5213
260
3
Grains
220
Hay
133
Fruits & Vegetables
71
Agriculture
Milk & Milkfat
64
Sugar Crops
51
OilseedsMeat & Poultry
4542
Other
5
631
7
Life Cycles of Products
From the mapping of material, we turn to analyzing a product throughout its life to learn its environmental impact. Used with rising frequency in this decade to study consumer products,
Life Cycle Analysis (LCA) has been defined by the USEPA as a way to “evaluate the environmental effects associated with any given industrial activity from the initial gathering of raw materials from the earth until the point at which all residuals are returned to the earth.” Several organizations have developed methods for LCA each using a different analytic approach to this complex activity. Regardless of the approach, several generic difficulties challenge LCA, including poor quality data, weak reasons or procedures for establishing analytic boundaries, and diverse values inherent in comparing environmental factors with no common objective, quantitative basis. The selection of products undergoing LCA to date has been haphazard, with several products receiving intense scrutiny while others are neglected almost completely. Consistent with the goal of establishing rigorous parameters for measuring the environmental impact of industrial activity, IE research properly focuses on each of these concerns about LCA.
Comparing existing methods for LCA gives insight into the conceptual framework used by researchers. The Society for Environmental Toxicology and Chemistry (SETAC) `Code of Practice’ for LCA stands out currently as the most widely recognized procedural model. The Code divides LCA into four distinct components: 1) Scoping; 2) Compiling quantitative data on direct and indirect materials/energy inputs and waste emissions; 3) Impact assessment; and 4) Improvement assessment. While variations exist, the theme of taking an inventory and performing an assessment based on collected data is common to all LCA approaches dating back to the early 1970’s.
Different methods for obtaining and presenting LCA results have evolved in response to the uncertainty associated with input data and the difficulty of reducing disparate indicators to a few meaningful numbers useful to managers and product designers. Methods for LCA differ in how they accommodate the need for qualitative analysis. LCAs variously denominate the value of environmental impact in kgs, dollars, square meters, and other numerical values. Continued research will shed light on what are the most effective methods for LCA and when can they be used in conjunction to reflect the multiple axes of environmental quality.
Though some methods for LCA receive approval for thoroughness and analytic consistency, these same methods have been criticized as requiring too much data, time, and money when each are in short supply. As an alternative method for assessing the environmental impact of products, researchers at AT&T have devised the Abridged Life Cycle Assessment Matrix, a method that couples quantitative environmental data with qualitative expert opinion into an analysis that conveys the uncertainty and multidimensionality of LCA and also yields a quantitative result. Table 4 shows an example of this LCA method in a comparison of the generic automobile of the 1950s and the 1990s. See Graedel, T.E., Allenby, B.R., and Comrie, P.R., 1995, Matrix Approaches to Abridged Life Cycle Assessment, Environmental Science and Technology, 29:134A-139A.
Table 4.
Life cycle analysis: Comparing a 1950s and 1990s car
Generic 1950s automobile
Life Cycle Stage
Environmental Concern
Materials choice
Energyuse
Solid residues
Liquid residues
Gaseous residues
Total
Premanufacture
2
2
3
3
2
12/20
Product manufacture
0
1
2
2
1
6/20
Product packaging and transport
3
2
3
4
2
14/20
Product use
1
0
1
1
0
3/20
Refurbishment-recycling-disposal
3
2
2
3
1
11/20
Total
9/20
7/20
11/20
13/20
6/20
46/100
Generic 1990s automobile
Life Cycle Stage
Environmental Concern
Materials choice
Energyuse
Solid residues
Liquid residues
Gaseous residues
Total
Premanufacture
3
3
3
3
3
15/20
Product manufacture
3
2
3
3
3
14/20
Product packaging and transport
3
3
3
4
3
16/20
Product use
1
2
2
3
2
10/20
Refurbishment-recycling-disposal
3
2
3
3
2
13/20
Total
13/20
12/20
14/20
16/20
13/20
68/100
Table 4. The two panels show environmental performance values for 1950s and 1990s generic American automobiles. This LCA method allows for broad comparison environmental performance at major stages of the product life cycle (e.g., product manufacture and product use) between two historical periods. Note, for example, the improved performance in product manufacture between the two periods, and also note the relatively low score for product use still assessed in the 1990s. The best possible value for each cell is 4 and a maximum score is 100. Source: Graedel, T.E., Allenby, B.R., and Comrie, P.R., 1995, Matrix Approaches to Abridged Life Cycle Assessment, Environmental Science and Technology, 29:134A-139A.
Research is needed to compare existing methods for LCA with an eye on their treatment of uncertain data, the weight given to various environmental parameters, and the format for presenting results. The aim of such research is the development of standardized methods for LCA that convey the data uncertainty and reflect the multidimensional character of environmental impacts caused by products. For a critical review of current methods for LCA see R.U. Ayres, 1995, Life Cycle Analysis: A Critique, Resources Conservation and Recycling, 14: 199-223. In the search for leverage, the question remains which products deserve an LCA and which do not.
Indicators
When we cannot measure a material within an industry or the components and fate of a product, our environmental knowledge is of a meager and unsatisfactory kind. The measurements must serve their purpose of navigation toward the goal of IE, revealing whether a great environmental impact is growing or shrinking in the long term, whether a policy is succeeding or failing, and differentiate the trivial from the deadly.
In our vocabulary, measures or metrics show the tons needed to perform a materials- balance or life cycle analysis. Indicators combine measurements into an index of progress or regress broadly for an industry, firm, or policy. Like the Cost of Living Index or the Index of Leading Indicators, a suite of indicators tell a more reliable story than a single measure.
In line with the objectives of IE, metrics should measure the efficiency with which resources and energy are converted to useful products and byproducts in industry with metrics such as product-to-waste ratios, and circulation and loss rates. These environmental metrics extend to all scales in the industrial system. At the global, national, and regional level the need is for metrics that integrate within and across industrial sectors, recognize the interdependence among them, and determine their combined effect on the population and environmental quality. For industrial sectors, research is needed to devise metrics that measure the average efficiency of materials use, identify the gap between leaders and followers in environmental performance, and examine the relative value of mandated as opposed to voluntary adoption of best environmental practices.
Metrics can isolate salient environmental variables that allow for more informed investigation of opportunities for synergism in the industrial system through the exchange of residual materials and energy. For firms, metrics should aim to provide measures of internal resource use and waste generation and the impact of products when they are consumed and disposed of. The challenge at this level is to devise meaningful environmental metrics that fit with existing benchmarks used to assess business operations, such as productivity, inventory accounting, and overhead costs. Several large US and European firms (e.g., 3M, AT&T, Novo Nordisk, Volvo) have incorporated environmental metrics into their business operations and have taken lead international positions in promoting improved environmental performance.
To show general progress in reducing environmental impacts the indicators must consistently link or relate the performance of a firm to that of an industry, or a region and nation. It must link an LCA to an analysis of material in a nation. The purpose of linkages is to avoid optimizing a single factory or sector at the expense of hurting the larger system’s environmental performance. The same is true of geography-based metrics: community level assessments should be coordinated with state-wide initiatives and contribute to achieving national goals for environmental quality. In developing a strategic environmental vision, the global optimization of the system should not be compromised by pursuing what are in fact only local maxima. Selecting the right scale for metrics is critical to ensuring that the system of interest is not arbitrarily defined and does not exclude relevant activities nor include too much that is irrelevant.
Finally, metrics should be devised such that do assume or promote lock-in to current technologies that are inherently problematic while ignoring promising innovations that are fundamentally more environmentally sound. For instance, optimizing the environmental attributes of the personal automobile based on a gasoline powered internal combustion engine should not hinder the development of inherently cleaner, though not yet commercial, alternatives. The metrics should promote the understanding of industrial evolution and its possibilities.
Discovering Dynamics in History
Research on the historical development of technological innovation and diffusion into society provides useful models for looking to the future and puts present performance in context. Historical rates yield the record of outcomes of technical and behavioral change, of political and economics forces all interacting. Patterns may also repeat from one nation to another. If historic rates for master processes such as decarbonization and dematerialization appear too slow to avert future problems, we might learn whether needed acceleration is within achieved experience or extraordinary. Most attempts to discover dynamics in history have been for the US and a few other industrialized countries for which good data are readily accessed. More effort needs to be applied to the records of China, India, and other countries, data permitting. For discussion of rates of diffusion in space and time, see Gruebler, A., Time for a Change: On the Patterns of Diffusion of Innovation, Daedalus 125(3): 19-42.
International Comparisons
As history can teach about the potential for change and its likely directions, so can international comparisons of practice in such fields as waste generation. Ongoing, comparative review of emerging strategies and frameworks for implementing IE in diverse countries would help shed light on efforts of each country. International comparisons yield insights into the roles, relative significance, and malleability of industrial structure, social organization, and culture as well as technology. For a decade-old comparison of environmental regimes in various countries which thus allows insight into both durable and transient national features, see Hoberg, G. Jr., 1986, Technology, Political Structure, and Social Regulation: A cross-national analysis, Comparative Politics, 18:357-376. For more information on IE activities in Japan see Industrial Ecology: US/Japan Perspectives, National Academy of Engineering, National Academy Press, 1994.
III. IMPLEMENTING INDUSTRIAL ECOLOGY
With means and measures for progress in IE, we turn to implementation. We group research on implementation into technical matters of the material basis and into institutional barriers and incentives.
a) The Technical Basis
Choosing the Material
IE research in the area of basic materials focuses on ways to increase the potential for reusing, recovering, and recycling materials used and generated by industry (including products, byproducts, and wastes) from the primary processing of materials and from actual industrial and consumer products leaving factories.
For instance, research on “smart materials” capable of sensing and responding to ambient changes in surrounding media as well as internal structural change offers the promise of reducing the mass necessary for different economic functions and saving the resources needed to replace failed structures through early detection and prevention. Research on surface and interfacial properties of materials could allow for more durable products that better resist corrosion and wear. Improving the strength-to-weight ratio and the thermal performance of materials can facilitate the development of transportation vehicles that require less mass to maintain structural integrity and allow engines to achieve greater thermodynamic efficiencies.
Anticipating the recycling that we shall discuss later, we note that choosing the right material can ease or retard recycling. Optimizing the performance features of materials often comes at the expense of increasing their complexity in products and heightening their sensitivity to contaminants, for example, the low tolerance for contaminants in high performance metals with strict alloying ratios. This complexity complicates later efforts at reprocessing. In cases where complex materials are recovered, their presence in a mixture with other less or differently refined materials translates to downgrading the recovered materials to lower performance standards and thus forfeiting much of their initial value. Research on improving materials composition in products to better accommodate materials cycling as well as research on materials selection and process design must remain aware of the current technical and economic drivers in the materials industries (e.g., high throughput, materials efficiency, and increased value added) in pursuing technological innovation in this environmentally strategic industry.
Research on alternative methods for materials processing to reduce toxicity must consider both the selection of feed materials as well as the processes involved in all stages of production. In many cases more environmentally benign starting materials exist but can not be used with existing capital equipment. IE research on materials processes thus focuses on opportunities for modifying processes to accommodate different starter materials, minimizing toxics generation, and optimizing the character of products and byproducts for reuse.
Research on these topics is well established, but the salutary environmental dimension remains to be much more fully explored. Research on the end-of-life stage of materials and products needs to be increased. For a review of materials research needs for IE see Basic Research Needs for Environmentally Responsive Technologies of the Future, P. Eisenberger, Ed., Princeton Materials Institute, Princeton, NJ, 1996.
Designing the Product
Research to improve the environmental character of consumer products (i.e., Design for Environment) complements research on the component materials that comprise them. Here too the purpose of research is to help achieve the objective of a closed materials cycle. Research on product design should aim to minimize the waste generated during product manufacture, simplify the reuse of products and their components, and minimize energy consumption use and other negative impacts of product use. In general, product designers have greater flexibility in selecting the materials components of products, including the use of reprocessed materials, than is the case for primary materials processors. The evolution of the uses of cadmium illustrates how a hazardous material can be incorporated either in dangerously dissipative products such as paint or in much easier to contain and recycle products such as batteries (Figure 4).
The stage of product assembly also offers opportunity for reducing the use of toxic materials and minimizing wastes. Designing products to ease disassembly is of considerable practical importance to enable recovery. The less labor and capital equipment necessary for disassembly, the more economically attractive recovery becomes. Clever design can also reduce the amount of materials needed in a product, for instance, the use of lower gauge metal sheet in aluminum beverage cans. Research in each of these areas of product design can be complemented by Life Cycle Analysis to understand the tradeoffs that occur in optimizing one stage of the manufacturing process in isolation from others. For a review of strategies and design options for improving the environmental character of products see US Congress Office of Technology Assessment, Green Products by Design: Choices for a Cleaner Environment, OTA-E-541, Washington, DC, US Government Printing Office, 1992.
Manufactured “Products” in the marketplace include items made of distinct material components assembled into more complex forms as well as intricate blends of materials such as chemicals. They range in size from jumbo jets to children toys and from gasoline to shampoo. Selecting representative products for case studies provides concrete examples that illustrate the leverage of product design on the subsequent environmental attributes of products and the processes used to make them. The selection of products that reflect the wide variety of industrial and consumer products in the marketplace and the performance of detailed case studies looking at the possible design choices and their effects constitutes a further area of IE research. For a case study on the environmental design of the telephone see Sekutowski, J.C. 1994. Greening the Telephone: A Case Study. pp. 178-185 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds., National Academy Press, Washington, D.C. For a case study on the environmental design of household refrigerators see Naser, S.F., Keoleian, G.A., and Thompson, L.T., 1993, Design of a CFC-Free, Energy Efficient Refrigerator, Chemical Engineering Dept., University of Michigan, Ann Arbor. Available from the National Pollution Prevention Center, Ann Arbor, MI.
Recovering the Material
The minimizing of waste and so environmental impact by choosing the right materials and assembling them right continues with the reuse of materials. For mixtures of material the challenge for recovery lies in separation. Using humans to separate materials is both costly and inefficient. Furthermore, in some cases two materials (e.g., different plastic resins) may appear similar to the naked eye but may differ significantly in their chemical and physical properties. Automated methods for materials separation are capable of detecting such differences by exploiting disparities in physical and chemical properties to distinguish between materials. Taking advantage of differences in particle size, density, and magnetic and optical properties of materials in municipal solid waste allows secondary materials processors to separate out organics, and ferrous and non-ferrous metals from waste streams. Sensor arrays and high speed computing capability now allow for real time identification and separation of different plastic resins in mixed waste streams.
For materials more intricately bound in waste streams, more sophisticated approaches are needed. Metals can be found in rinse waters from metal finishers, stack emissions and pollution control sludge from coal-fired power plants, and baghouse dusts from metal smelters among others. A range of technical approaches exist for recovering metals from wastes including electrolytic techniques (common in hydrometallurgical processes used for primary materials), acidic leaching (familiar to mining engineers) as well as a variety of membrane technologies. For a review of state of the art in the recovery of metals from complex solutions see Hager, J.P., et al., eds., 1994, Extraction and Processing for the Treatment and Minimization of Wastes, published by The Minerals, Metals, and Materials Society, Warrendale, PA.
Many tons of metals are annually lost to productive use as a result of their dilution or minute concentrations in wastes. In a national analysis of metals concentrations in waste streams in the US, researchers have found that metals concentrations are frequently higher in waste stream compared with those in typical ore bodies. This analysis was conducted using the “Sherwood Plot,” which relates the selling price of a material with its degree of dilution in the matrix from which it is being separated. Figure 5 shows the “Sherwood Plot” for resource concentrations in their natural matrix and those found in US waste streams. Based on this analysis large amounts of valuable resources are annually discarded as a result of their being viewed as “wastes” (a phenomenon that reflects the regulatory, as opposed to technical, origin of this term). The analysis also demonstrates that in this instance enhanced materials recovery would not only provide environmental benefits but economic ones as well.
For each of the above areas, IE research can freshly synthesize knowledge on materials separation and recovery in an environmental framework. The research should include the identification of needs for improving existing recovery systems based on their demonstrated ability to isolate distinct materials as well as the need for new separation and recovery technologies. More advanced research in this area could explore opportunities for recovering materials that are currently dissipated (i.e., lost) through normal use, in cases where this is feasible. Lots of caustics and solvents go down our drains.
The massive quantities of several relatively safe, non-toxic wastes surely provide opportunities for recovery. These materials are often byproducts from large-scale industrial activity and, though mostly benign, may contain small amounts of trace contaminants. The largest of these waste streams are coal combustion byproducts (CCB) (i.e., fly and bottom ash, slag, and desulfurization sludge), averaging about 100 MMT annually in the US. Currently some fraction of this material is used in road aggregate and cement manufacture, however the majority of CCB continues to accumulate in waste piles. For an analysis of the uses CCB and other bulk wastes see Ahmed, I., Use of Waste Materials in Highway Construction, Noyes Data Corporation, Park Ridge, New Jersey, 1993. Also see Barsotti, A.F., and Kalyoncu, R., Implications of Flue Gas Desulfurization on the Mineral Industries, US Bureau of Mines (RIP), Washington, D.C., 1995.
Phosphogypsum provides an example of a bulk material where the presence of contaminants confounds efforts at recovery. Roughly 50 MMT of phosphogypsum are generated annually as a byproduct from the production of phosphoric acid, mostly used for producing fertilizer and animal feed, in the US. The use of phosphogypsum for road construction and as a cement additive is constrained by the presence of radionuclides (e.g., uranium-230 & 234, radium-226, and radon-222) and, in some cases, heavy metals (e.g., arsenic, chromium). Development continues on means for purifying this waste material for productive use. Other examples of large scale potentially reusable industrial waste flows include spent potliners from metals smelters and refractory materials used in glass manufacture.
Substituting these bulk materials in the economy directly displaces masses of virgin materials and thus avoids environmental disruption from mining and quarrying. The factors limiting fuller integration of these waste resources include the presence of contaminants and the costs associated with their transport. IE research on bulk industrial wastes should aim to neutralize the problems preventing greater recovery of these materials. Specifically, IE research should identify major sources and potential uses for bulk industrial wastes, clarify the type and level of contaminants found in them, point to the technologies involved in rendering wastes suitable for reuse, and analyze the further possibilities for their greater use in the economy.
Monitoring and Sensing Technology
Accurate empirical data on waste streams and other operational variables are a prerequisite for designing and using environmental performance measures in industry and for implementing new processes and practices. Additionally, environmental monitoring of natural systems and the services they provide helps gauge pollution and its effects. The National Resources Inventory, concentrating on soil erosion and farming, illustrates the utility of such monitoring (Kellogg, RL, GW TeSelle, and JJ Goebel, 1994, Highlights from the 1992 National Resources Inventory, Journal of Soil and Water Conservation 49:521-527.) In areas such as agriculture and forestry research might consider how monitoring and sensing technologies can contribute to achieving greater efficiency, e.g., in application of chemicals. Research is also needed to develop reliable, low-cost monitoring systems for measuring total emissions to all environmental media stemming from an industrial facility. To consider a facility or ecopark inside a “bubble” we need to measure more than the smoke from one or a few chimneys or pipes.
b) Institional barriers and incentives
Overcoming the technical barriers associated with recovering materials from waste streams is a necessary but insufficient step for stimulating the greater use of wastes in the economy. Technology making recovery cheap and assuring high quality input streams must be followed by encouraging regulations and easy informational access. Finally a ready market must appear. Technologes are inseparable from institutional and social strategies. We need to learn why IE is not already the rule in industry and remove the impediments. Is this going to pay? From whose perspective? What balance of market-based, financial, regulatory, and legal strategies may dispose the industrial system to move in the desired direction at reasonable cost? For a conceptual introduction, see Frosch, R.A., 1996, Toward the End of Waste: Reflections on a New Ecology for Industry, Daedalus 125(3):199-212.
Market and Informational Barriers
Absent direct governmental interference, the markets for waste materials will ultimately rise or fall based on their economic vitality. Markets are sophisticated information processing machines whose strength resides in large part on the richness of the informational feedback available. The potential size and character of markets for what we currently label wastes remain open questions.
One option for waste markets are dedicated `Waste Exchanges’ where brokers trade industrial wastes like other commodities. By using internet technology to facilitate the flow of information, the need for centralized physical locations for either the stuff or for the traders in the stuff may be minimal. Research is needed on waste information systems that would form the basis for waste exchanges. Systems would need to list available industrial wastes as well as the means for buyers and sellers to access the information and conduct transactions. The degree to which such arrangements would allow direct trading or rely on the brokers to mediate transactions presents a further question. As part of the market analysis for waste materials, research is needed to understand past trends regarding the effect of price disparities between virgin and recovered materials, and to assess the effect of other economic factors associated with waste markets, such as additional processing and transportation costs. A further matter for investigation concerns whether some threshold level of industrial agglomeration is necessary to make such markets economically viable. For a recent review of this topic see USEPA, 1994, Review of Industrial Waste Exchanges, Report # EPA-530-K-94-003, Waste Minimization Branch, Office of Solid Waste, USEPA, Washington, D.C.
Progress is already being made on this front. The Chicago Board of Trade (CBOT), working with several government agencies and trade associations, has begun a financial exchange for trading scrap materials. Other exchanges such as the National Materials Exchange Network (NMEN) and the Global Recycling Network (GRN) facilitate the exchange of both materials recovered from municipal waste streams and of industrial wastes. Analysts might propose ideas for improving or facilitating the development of these exchanges. The value of such exchanges as a means of improving the flow of information depends on the deficiency of the current information flow, and how much this particular aspect of recycling plays in recycling’s success or failure. The CBOT is different from the other exchanges in that it is a financial market — starting now as a cash exchange with hopes that it will evolve into a forward and/or futures market.
A simple waste exchange is premised on the notion that opportunities for exchange are going unrealized. A cash exchange has a related premise that there is a need for what economists call price discovery. Finally, a futures or forward market exists to allow the risk associated with price volatility to be traded independent of the commodity.
The value of mechanisms such as the CBOT may be indirect, that is, price discovery may not be the main problem in the recyclables market, though important in some circumstances. Similarly, creating a market for buying and selling price risk through futures or forward contracts is useful but not likely to be extensive in the near term. The real value in the CBOT-type scheme may prove to be infrastructure and standards that it brings. The existence of the CBOT recyclables exchange requires specifications for scrap materials sufficiently robust that distant entities can trade sight unseen. Further, the CBOT system has forced the creation of dispute arbitration mechanisms. Analysts need to watch such developments and report on them.
Business and Financial
The private firm is the basic economic unit and collectively constitutes the mechanism for reducing inventions and innovations to practice, in service of environmental quality or other goals. Corporations employ a spectrum of organizational approaches to handle environmental matters. In some cases the environment division of a corporation concerns itself exclusively with regulatory compliance and the avoidance of civil liability for environmental matters. For other firms the environment plays a more strategic role in corporate decision making. Decisions made at the executive level strongly determine whether or not companies adopt new technologies and practices that will effect their environmental performance. Relatedly, the manner in which corporations integrate environmental costs into their accounting systems, for instance how to assign disposal costs, bears heavily on its ability to make both short and long term environmentally responsible decisions.
Research is needed to understand better the role of corporate organization and accounting practices in improving environmental performance and the incentives to which corporations respond for adopting new practices and technologies. Such studies would examine the learning process in corporate environments as well as investigate how corporate culture influences the ultimate adoption or rejection of environmentally innovative practices. For a study on the influence of corporate organization and culture on environmental decision making see Porter, M.E. and van der Linde, C., 1995, Toward a New Conception of the Environment-Competitiveness Relationship, Journal of Economic Perspectives 9(4):xx-xx. For an analysis of the current methods for integrating environmental costs into corporate accounting systems see Ditz, D., Ranganathan, J., and Banks, R.D., Green Ledgers: Case Studies in Corporate Environmental Accounting, World Resources Institute, 1995.
Several management/learning approaches (e.g., Total Quality Management, High Performance Workplace, Lean Production) currently enjoy widespread recognition in business. Many of the efficiency enhancing practices advocated by these approaches bear strong resemblance to those of IE, for example, the stress on performance measures and improved information flows. Research is needed to integrate IE principles into the framework of TQM and other management/learning approaches now widely recognized in diverse industries. For discussion of the new environmental context for private firms, see Allenby, B.R., Evolution of the Private Firm in an Environmentally Constrained World, The Industrial Green Game: Implications for environmental design and management, D.J. Richards, ed., National Academy Press, Washington, D.C., in press.
Regulatory
Environmental regulation strongly induces companies to appreciate the environmental dimensions of their operations. Businesses must respond to local, national, and international regulatory structures established to protect environmental quality. Although few question that regulations have helped to improve environmental quality, many argue that wiser, less commanding regulation would improve quality further at less cost. Agreements on hazardous waste tightly regulate the transport of these wastes across state and national boundaries, perhaps reducing opportunities for re-use and encouraging greater extraction of virgin stocks. Elements of the US federal regulatory apparatus for wastes, (e.g., RCRA and CERCLA) heavily regulate the storage and transport of wastes and dictate waste treatment methods that also serve to dissuade later efforts at materials recovery. Research is needed to determine the role of past and current environmental regulation in encouraging or discouraging materials recovery efforts.
With better understanding of the effects of past regulation, researchers could explore regulatory reforms to provide greater incentive to recover materials from waste. This line of inquiry into the effect of regulatory reform should include a broader analysis of policies that favor more environmentally sound industrial ecosystems, such as rewarding firms that exploit materials symbioses within and between facilities, providing incentives for investment in capital equipment that uses secondary materials inputs, promoting manufacturer responsibility for product after their useful life (i.e., takeback legislation), encouraging disposal practices that do not prevent later access to materials, and discontinuing subsidies to virgin materials producers. For a discussion of the design and implications of takeback legislation see Lifset, R., 1993, Take it Back: Extended producer responsibility as a form of incentive-based environmental policy, Journal of Resource Management and Technology 21(4):163-175.
Legal
Like regulation, the risk of civil liability from handling industrial waste also affects how much is recycled. The question of how developments in liability law affect decisions on the recovery of wastes from materials thus forms a further area for IE research. Such research would also investigate the potential for legal reforms that would facilitate greater materials recovery, for instance by limiting the responsibility of parties handling wastes, while maintaining the societal protection that the statutes were meant to ensure.
Though ostensibly unrelated to environmental law, a host of other statutory bodies can affect the development of efficient industrial ecosystems. Anti-trust statutes can effectively bar the agglomeration of enterprises necessary to effectively close materials loops. Consumer protection law can encumber efforts to improve the environmental design of products. Law governing external trade impact international resource allocation as well as the transport of recoverable wastes. Legal decisions relating to government procurement practices can also help or hurt markets for recovered materials and can directly exert pressure environmentally important sectors. The prime motivations for these laws (or rules) are usually not environmental. However, research in this area can identify cases where environmental considerations may indicate reforms that do not interfere with the otherwise desired political, social, or economic effect. For an extended discussion on the environmental dimension of trade law see Esty, D.C., 1994, Greening the GATT: Trade, environment, and the future, Institute for International Economics, Washington, D.C.
Comparisons among policies and firms was one of the promised benefits of indicators and metrics. Studies in business, regulation, and law can yield similar benefits. The studies should advance IE’s goal of lightening the environmental impact per person and per dollar.
Regional Strategies
Often geographic regions may provide a sensible basis for implementing IE. Industries tend to form spatial clusters in specific geographic regions based on factors such as access to raw materials, convenient transportation, technical expertise, and markets. This is particularly true for `heavy’ industries requiring large resource inputs and generating extensive waste quantities. Furthermore, the industries supporting large industrial complexes tend to be located within reasonable proximity to their principal customers. These compact complexes, such as the steel industry around the southern Great Lakes, provide excellent subjects for the flow charts of industrial ecology. Research can investigate the geographic, economic, political and other factors that contribute to the development of symbiotic materials flows among industries in a region and overall regional environmental performance. Due to the unique character of different regions this work could proceed in the form of case studies of regions containing a concentration of industries in a particular sector, for example, the steel industry in the southern Great Lake states.
Still more compact and so more ideal subject for IE are Ecoparks. They are industrial facilities clustered to minimize both energy and material wastes through the internal bartering and external sales of wastes. One industrial park located in Kalundborg, Denmark has established a prototype for efficient reuse of bulk materials and energy wastes among industrial facilities (Figure 6). The park houses a petroleum refinery, power plant, pharmaceutical plant, wallboard manufacturer, and fish farm that have established dedicated streams of processing wastes (including heat) between facilities in the park. Figure 6 shows a schematic diagram of the Kalundborg Industrial Ecopark. Research should investigate the prospects for similar industrial ecoparks. Factors include the need for high quality inputs streams a nd the reliability of supplies. What are the, business reasons for failure? Will Ecoparks self assemble? Research could also more broadly address the question of what spatial scales are most advantageous and practical for the establishment of regional industrial networks. Must they be physically co-located or is there a limited range of proximities for which regional networks could operate effectively?
IV. CONCLUSION
Industrial ecology is both a job and a discipline. As a discipline, industrial ecology seeks to provide rigorous technical understanding that fosters systems of production and consumption that can be sustained for very long periods of time, even indefinitely, without significant environmental harm. IE takes a systems view of industry in developing strategies to facilitate more efficient use of material and energy resources and to reduce the release of hazardous as well as non-hazardous wastes to the environment. The ultimate objective of the field is the emergence of an economy that cycles virtually all of the materials it uses, emitting only micro amounts of wastes and pollutants, while providing high and increasing services to the large human population already here and still likely to grow. For the United States, at least a factor of ten improvement in emissions per dollar of GDP seems needed during the next century.
Research on goals and concepts sets the framework of IE. An underlying question is what is to be learned from the analogy between natural and industrial ecosystems. Exploiting the biological analogy, how can we better understand the evolution of industrial metabolism and resource consumption in industrialized society and can we extract patterns of development that explain the past use of resources and indicate likely futures? Indispensable to this activity are accurate accounts of the size and structure of current resource use, and deeper understanding of the environmental implications of the manufacture, distribution, use, and disposal of present products.
Tracking the flow of an individual chemical element from initial extraction to final disposition usefully highlights the industries using that element and indicates opportunities for conserving resources and limiting harmful exposures. Following the resource needs and waste generation in individual firms and whole industrial sectors provides public and private managers the means to assess the environmental performance of a given firm or sector, learn more about the network of materials flows wherever they may lead, and isolate the factors and forces driving network development.
Research on implementation lies at the heart of IE as an applied science. Implementing IE in the diverse industries that form the economy will require both technological innovations and economic, regulatory, and legal incentives, or at least fewer disincentives. Technical research should focus on materials, products, and processes that lead to reduced resource use and waste generation in industry. Complementary efforts should consider the organizational factors and incentives that affect the ability of corporations and other actors to make operational changes that lead to improved environmental performance. Regional studies underscore the possibilities for cycling materials through local industrial networks and shed light on the impact of local or regional industrial activity on surrounding populations and landscapes.
First one and then another road may be the best route to the goal of IE. Research underlies them all. Improved means to work together, such as a research network on metals, are needed and must be actively considered during the next phase of the development of the field. At this stage, wisdom suggests that the research community limit the agenda of IE and do the limited work well. We should seek to answer specific questions that will produce environmental returns. For example, how shall we combine the harm per kilogram with the kilograms of wastes to guide control measures to the most important wastes and chart our progress in minimizing environmental impact? What indices will integrate environmental impact and so reveal success or failure in terms of the costs of such things as choice of material or product design or recovery of material?
Industrial ecology began with a shared intuition that a vastly superior economy for the environment is both technically feasible and necessary if the economy is to grow. The rough drawings we have been able to make so far are encouraging, and history seems to be on our side. Properly elaborated during the coming years, industrial ecology could show where the most powerful levers are, efficiently guiding us to the means for a lean, durable, and highly productive economy.
V. BIBLIOGRAPHY
The following bibliography lists publications that deal explicitly with industrial ecology as an area of research as well as related literature. The structure of the bibliography corresponds to the categories used in this report and also adds sections for cross-cutting references and relevant scholarly journals. The subsequent list of web sites can only hint at the rapidly evolving state of electronic information resources.
For publications explicitly or clearly within industrial ecology we have endeavored to sample the work of recognized active authors and researchers in this area. As regards the more general, related environmental literature cited, we have selected references to illustrate substantive analyses that may inform and contribute to industrial ecology research. References appear in chronological order within each section.
For excellent, complementary bibliographies, see Erkman, S., 1997, Industrial Ecology: A Historical View, Journal of Cleaner Production, in press; and Erkman, S., 1994, Ecologie industrielle, metabolisme industriel, et societe d’utilisation, Etude effectuee pour la Fondation pour le progres de l’homme, Geneva, e-mail: serkman@vtx.ch
Introduction (The Goal and the Role)
Ausubel, J.H., 1996, Can Technology Spare the Earth?, American Scientist, 84(3):166-178.
O’Rourke, D., Connelly, L., and Koshland, C.P., Industrial Ecology: A Critical Review, 1996, International Journal of Environment and Pollution 6(2/3):89-112.
Schulze, P., ed., 1996, Engineering Within Ecological Constraints, National Academy Press, Washington, D.C.
Cohen, J.E., 1995, How Many People Can the Earth Support?, Norton, New York.
Frosch, R.A., 1995, Industrial Ecology: Adapting Technology for a Sustainable World, Environment 37(10):16-37.
Lowe, E. and Evans, L., 1995, Industrial Ecology and Industrial Ecosystems, Journal of Cleaner Production, 3(1-2).
Allenby, B.R., 1994, Industrial Ecology Gets Down to Earth, Circuits and Devices, January `94 pp. 24-28.
Allenby, B.R. and Richards, D.J., eds., 1994, The Greening of Industrial Ecosystems, National Academy Press, Washington, D.C.
Frosch , R.A., 1994, Industrial Ecology: Minimizing the Impact of Industrial Waste, Physics Today, 47(11):63-8.
Socolow, R., 1994, Six Perspectives from Industrial Ecology, p. 3-16 in Industrial Ecology and Global Change, Socolow, R., Andrews, C., Berkhout, F., and Thomas V., eds., Cambridge University Press, New York.
Allenby, B.R., 1992, Achieving Sustainable Development Through Industrial Ecology, International Environmental Affairs, 4(1):56-68.
Ayres, R.U. and Simonis, U., eds., 1992, Industrial Metabolism, United Nations University Press, Tokyo, Japan.
Ausubel, J.H., 1992, Industrial Ecology: Reflections on a Colloquium, Proceedings of the National Academy of Sciences of the USA 89(3):879-884.
Ehrenfeld, J.R. 1992, Industrial Ecology: A Technological Approach to Sustainability, Hazardous Waste & Hazardous Materials 9(3):209-211.
Frosch, R.A., 1992, Industrial Ecology: A Philosophical Introduction, Proceedings of the National Academy of Sciences of the USA 89(3):800-803.
Jelinski, L.W., Graedel, T.E., Laudise, R.D., McCall, W., and Patel, C.K.N., 1992, Industrial Ecology: Concepts and Approaches, Proceedings of the National Academy of Sciences of the USA 89(3):793-797.
Tibbs, H., 1992, Industrial Ecology: An Environmental Agenda for Industry, Whole Earth Review, Winter 1992. Pp. 4-19.
Ausubel, J.H. and Sladovich, H.E., eds., 1989, Technology and Environment, National Academy, Washington DC.
Frosch, R.A. and Gallopoulos, N.E., 1989, Strategies for Manufacturing, Scientific American, September 1989, pp. 144-152.
Huisingh, D., 1989, Waste Reduction at the Source: The Economic and Ecological Imperative for Now and the 21st Century, pp. 96-111 in Management of Hazardous Materials and Wastes: Treatment, Minimization, and Environmental Impacts, Majumdar, S.K., et al., eds., Pennsylvania Academy of Sciences.
Marchetti, C., 1979, On 1012: A Check on the Earth-Carrying Capacity for Man, Energy 4:1107-1117.
Ayres, R.U., 1978, Resources, Environment and Economics: Applications of the Materials/Energy Balance Principle, John Wiley & Sons, New York.
How Industrial Ecology Got its Name
Graedel, T.E., 1996, On the Concept of Industrial Ecology, Annual Review of Energy and Environment, Volume 21.
Allaby, M. ed., 1994, The Concise Oxford Dictionary of Ecology, Oxford University Press, Oxford, U.K.
Allenby, B.R. and Cooper, W.E., 1994, Understanding Industrial Ecology from a Biological Systems Perspective, Total Quality Environmental Management, Spring 1994 pp. 343-354.
Odum, E. 1989, Ecology and Our Endangered Life-Support Systems, Sinnauer Associates, Sunderland, MA.
Odum, H.T., 1988, Self-Organization, Transformity, and Information, Science 242:1132-1139.
Holling, C.S., 1986, Resilience of Ecosystems, Local Surprises and Global Change, pp. 292-317 in Clark, W.C. and Munns, R.E., eds., Sustainable Development of the Biosphere, Cambridge University Press, Cambridge, U.K.
Odum, H.T., 1986, Ecosystem Theory and Application, John Wiley and Sons, New York.
Holling, C.S., ed., 1978, Adaptive Environmental Assessment and Management, John Wiley and Sons, London, U.K.
Zero Emission Systems
Iantovksi, E., and Mathieu, P., Highly Efficient Zero Emission CO2-Based Power Plant, University of Liege, Dept. of Nuclear Engineering and Power Plants, Belgium.
Lave, L.B., Hendrickson, C.T., and McMichael, F.C., 1995, Environmental Implications of Electric Cars, Science 268:993-5.
Allam, R.J., and Spilsbury, C.G., 1992, A Study of the Extraction of CO2from the Flue Gas of a 500 MW Pulverised Coal Fired Boiler, Energy Conversion and Management 33(5-8):373-378.
Marchetti, C., 1989, How to Solve the CO2 Problem Without Tears, International Journal of Hydrogen Energy 14(8):493-506
Lee, T.H., 1989, Advanced Fossil Fuel Systems and Beyond, pp. 114-136 in Ausubel, J.H., and Sladovich, H.E., eds., Technology and Environment, National Academy, Washington DC.
Hafele, W., Barnert H., Messner, S., Strubegger, M., and Anderer, J., 1986, Novel Integrated Energy Systems: The Case of Zero Emissions, pp. 171-193 in Clark, W.C. and Munns, R.E., eds., Sustainable Development of the Biosphere, Cambridge University, Cambridge, U.K.
Wernick, I.K., 1994, Dematerialization and Secondary Materials Recovery: A Long-Run Perspective, Journal of the Minerals, Metals, and Materials Society, 46(4):39-42.
Bernardini, O. and Galli, R., 1993, Dematerialization: Long Term Trends in the Intensity of Use of Materials and Energy, Futures 25(4):431-448.
Rogich, D.G. and Staff, 1993, Materials Use, Economic Growth, and the Environment, Presented at the International Recycling Congress and REC’93 Trade Fair, U.S. Bureau of Mines, Washington, D.C.
Sousa, L.J., 1992, Towards a New Materials Paradigm, U.S. Bureau of Mines, Washington, D.C.
U.S. Bureau of Mines, 1990, The New Materials Society: Volume I-III, U.S. Government Printing Office, Washington, D.C.
Herman, R., Ardekani, S.A., and Ausubel, J.H., 1989, Dematerialization, pp. 50-69 in Technology and Environment, Ausubel, J.H. and Sladovich, H.E., eds., National Academy Press, Washington, D.C.
Waddell, L.M. and Labys, W.C., 1988, Transmaterialization: Technology and Materials Demand Cycles, Materials and Society 12(1):59-86.
Williams, R.H., Larson, E.D., and Ross, M.H., 1987, Materials, Affluence and Industrial Energy Use, Annual Review of Energy and Environment (12):99-144.
Tilton, J.E., ed., 1983, Materials Substitution: Lessons from the Tin-Using Industries, Resources for the Future, Inc., Washington, D.C.
Spencer, V.E., 1980, Raw Materials in the United States Economy 1900-1977, Bureau of the Census Technical paper No. 47, U.S. Department of Commerce/U.S. Department of the Interior, Washington D.C.
Malenbaum, W., 1978, World Demand for Raw Materials in 1985 and 2000, McGraw-Hill, New York.
Goeller, H.E. and Weinberg, A.M., 1976, The Age of Substitutability: What do we do when the mercury runs out, Science 191:683-689.
FunctionalityEconomy
Stahel W. R., 1994, The Utilization-Focused Service Economy: Efficiency and Product-Life Extension, pp. 178-190 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds.
Stahel, W.R., 1993, Product Design and Utilization, The Product Life Institute, Geneva, Switzerland.
Materials Flow and Balance Analysis
Wernick, I.K., Waggoner, P.E., and Ausubel, J.H., Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the U.S., Journal of Industrial Ecology 1(3), in press, 1997
Ayres, R.U. and Ayres, L.W., The Life-Cycle of Chlorine: Part I-IV, Journal of Industrial Ecology, 1(1), in press, 1997.
Ayres, R.U. and Ayres, L.W., Use of Material Balances to Estimate Aggregate Waste Generation in the United States (Excluding Chemicals), in Measures of Environmental Performance and Ecosystem Condition, P. Schulze ed., National Academy Press, Washington, D.C., in press, 1997.
Kleijn, R., Tukker, A., and van der Voer, E., Chlorine in the Netherlands: Part I, Journal of Industrial Ecology, in press, 1997.
Sagar, A.D. and Frosch R. A., Industrial Ecology: A Perspective and an Example, Journal of Clean Technology, in press, 1997.
Ayres, R.U. and Ayres, L.W., 1996, Industrial Ecology: Towards Closing the Materials Cycle, Edward Elgar Publishing, Cheltenham, U.K.
Duchin, F. and Lange, G., 1995, Prospects for the Recycling of Plastics in the United States, Structural Change and Economic Dynamics, July 1995.
Environmental Defense Fund et al., 1995, Paper Task Force Recommendations for Purchasing and Using Environmentally Preferable Paper, Final Report & Technical Supplements I-V, (Duke University, Environmental Defense Fund, Johnson & Johnson, McDonald’s, The Prudential Insurance Company of America, Time Inc.), Published by the Environmental Defense Fund, New York.
Wernick, I.K. and Ausubel, J.H., 1995, National Materials Flows and the Environment, Annual Review of Energy and Environment, 20:462-492.
Thomas, V.M. and Spiro, T.J., 1995, An Estimation of Dioxin Emissions in the United States, Toxicological and Environmental Chemistry, (50):1-37.
Ayres, R.U. and Ayres, L.W., 1994, Chemical Industry Wastes: A Materials Balance Analysis, INSEAD, Fontainebleau, France.
Ince, P.J., 1994, Recycling of Wood and Paper Products in the United States, U.S. Dept. of Agriculture Forest Service, paper delivered at United Nations Economic Commission for Europe Timber Committee Team of Specialists on New Products, Recycling, Markets, and Applications for Forest Products, June 1994. Copies available from USDA Forest Service Forest Products Laboratory, Madison Wisconsin, 53705, USA.
Kinzig, A.P. and Socolow, R.H., 1994, Human Impacts on the Nitrogen Cycle, Physics Today 47:24-31.
Lave, L., Cobas-Flores, E., Hendrickson, C.T., McMichael, F.C., 1995, Using Input-Output Analysis to Estimate Economy-Wide Discharges, Environmental Science and Technology 29(9):420A-426A.
Duchin, F., 1992, Industrial Input-Output Analysis: Implications for Industrial Ecology, Proceedings of the National Academy of Sciences of the USA 89(3):851-855.
Stigliani, W.M. and Anderberg, S., 1992, Industrial Metabolism at the Regional Level: The Rhine Basin, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Thornton, I., 1992, Sources and Pathways of Cadmium in the Environment, IARC Scientific Publications 118:149-62, Lyon, France.
Life Cycles of Products
Ayres, R.U., 1995, Life Cycle Analysis: A Critique, Resources Conservation and Recycling, 14:199-223.
Graedel, T.E., Allenby, B.R., and Comrie, P.R., 1995, Matrix Approaches to Abridged Life Cycle Assessment, Environmental Science and Technology, 29:134A-139A.
Narodoslawsky, M., Krotscheck, C., 1995, The Sustainable Process Index (SPI): Evaluating Process According to Environmental Compatibility, Journal of Hazardous Materials, 14(2-3):383-397.
Weitz, K.A., Malkin, M., and Baskir, J.N., eds., 1995, Streamlining Life-Cycle Assessment Conference and Workshop, Research Triangle Institute, Research Triangle Park, NC.
Organization for Economic Co-operation and Development, Life-Cycle Management and Trade, 1994, Paris, France.
Klimisch, R.L., 1994, Designing the Modern Automobile for Recycling, pp. 172-178 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds., National Academy Press, Washington, D.C.
Sekutowski, J.C., 1994, Greening the Telephone: A Case Study, pp. 178-185 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds., National Academy Press, Washington, D.C.
Society of Environmental Toxicology and Chemistry [SETAC], 1994, Life-Cycle Assessment Data Quality: A Conceptual Framework, SETAC, Pensacola, FL.
Curran, M.A., 1993, Broad-Based Environmental Life Cycle Assessment, Environmental Science and Technology 27(3):431-436.
Naser, S.F., Keoleian, G.A., and Thompson, L.T., 1993, Design of a CFC-Free, Energy Efficient Refrigerator, Chemical Engineering Dept., University of Michigan, Available from the National Pollution Prevention Center, Ann Arbor, MI.
Sage, J., 1993, Industrielle Abfallvermeidung und deren Bewertung am Beispiel der Leiterplattenherstellung, dbv-Verlag, Technische Universitat Graz, Austria. [Describes Sustainable Process Index method for LCA]
Society of Environmental Toxicology and Chemistry, 1993, Guidelines for Life-Cycle Assessment: A “Code of Practice,” SETAC, Pensacola, FL.
U.S. Environmental Protection Agency, 1993, Life-Cycle Assessment: Inventory Guidelines and Principles, EPA Report no. EPA/600/R-92/245, USEPA, Office of Research and Development, Washington, D.C.
Fava, J.A., ed., 1991, A Technical Framework for Life-Cycle Assessments, Society of Environmental Toxicology and Chemistry, Washington D.C.
Hocking, M.B., 1991, Paper Versus Polystyrene: A Complex Choice, Science 251:504-505.
Lubkert, B., Virtanen, Y., Muhlberger, M., Ingman, I., Vallance, B., and Alber, S., 1991, Life Cycle Analysis: IDEA an International Database for Ecoprofile Analysis, International System for Applied Systems Analysis, Laxenburg, Austria.
Steen, B. and Ryding, S-O., 1991, The EPS Environmental Accounting Method: An Application of Environmental Accounting Principles for Evaluation and Valuation of Environmental Impact in Product Design, Swedish Environmental Research Institute, Goetberg, Sweden.
Ahbe, S., Braunschweig, A., and Mueller-Wenk, R., 1990, Methodik fuer Oekobilanzen auf der Basis Oekologischer Optimierung, Schriftenreihe Unwelt Nr. 133, Bundestat fuer Unwelt, Wald and Landschaft (BUWAL), Bern, Switzerland. [Describes Swiss Eco-Points method for LCA]
Indicators
Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D., and
Schuetz, H., 1997, Resource Flows: The Material Basis of Industrial Economies, joint publication of World Resources Institute, Wuppertal Institute for Climate, Environment and
Energy, Netherlands Ministry of Housing, Planning, and Environment, and National Institute for Environmental Studies, available from World Resources Institute, Washington DC.
Wernick, I.K., and Ausubel, J.H., 1995, National Materials Metrics for Industrial Ecology, Resources Policy 21(3):189-198.
Gruebler, A., 1996, Time for a Change: On the Patterns of Diffusion of Innovation, Daedalus 125(3): 19-42.
Curzio, A.Q., Fortis, M., and Zoboli, R., eds., 1994, Innovation, Resources, and Economic Growth, Springer-Verlag, New York.
Smil, V., 1994, Energy in World History, Westview, Boulder.
Vasey, D.E., 1992, An Ecological History of Agriculture: 10,000B.C.-A.D. 10,000, Iowa State, Ames IA.
Nakicenovic, N. and Gruebler, A. eds., 1991, Diffusion of Technologies and Social Behavior, International Institute for Applied Systems Analysis, Springler-Verlag, Berlin.
Gruebler, A., 1989, The Rise and Fall of Infrastructures: Dynamic Evolution and Technological Change in transport, Physica-Verlag, Heidelberg, Germany.
Ausubel, J.H., 1988, Regularities in Technological Development: An Environmental View, pp. 70-94 in Technology and Environment, Ausubel, J.H. and Sladovich, H.E., eds., National Academy Press, Washington, D.C.
International Comparisons
Erkman, Suren, 1995, Ecologie Industrielle, Metabolisme Industriel, et Socie’te’ D’utilisation, Supported by the Foundation for the Progress of Humanity, Paris.
Fishbein, B.K, 1994, Germany, Garbage, and the Green Dot, INFORM, New York.
Overcash, M.R., 1994, Cleaner Technology Life Cycle Methods: European Research and Development, Hazardous Waste & Hazardous Materials 11(4):459-477
Watanabe, C., 1993, Energy and Environmental Technologies in Sustainable Development: A View From Japan, The Bridge, Summer 1993, National Academy of Engineering, Washington D.C.
Smith, T.T., 1993, Understanding European Environmental Regulation, Conference Board Report #1026, Conference Board, New York.
World Bank, 1989, Environmental Accounting for Sustainable Development: Selected Papers from Joint World Bank Workshops, World Bank, Washington, D.C.
Hershkowitz, A. and Salerni, E., 1987, Garbage Management in Japan: Leading the Way, INFORM, New York.
Hoberg, G. Jr., 1986, Technology, Political Structure, and Social Regulation: A Cross-National Analysis, Comparative Politics, 18:357-376.
Choosing the Material
Eisenberger, P., ed., 1996, Basic Research Needs for Environmentally Responsive Technologies of the Future, Princeton Materials Institute, Princeton, NJ.
US Congress Office of Technology Assessment, 1993, Biopolymers: Making Materials Natures Way, OTA Report no. OTA-BP-E-102, Washington, D.C.
Allenby, B.R., 1992, Industrial Ecology: The Materials Scientist in an Environmentally Constrained World, Materials Research Bulletin (17)3:46-51.
Douglas, J.M., 1992, Process Synthesis for Waste Minimization,Industrial & Engineering Chemistry Research, v. 31 no. 238.
Mitchell, J.W., 1992, Alternative Starting Materials for Industrial Processes, Proceedings of the National Academy of Sciences of the USA 89(3):821-826.
National Academy of Sciences, 1989, Materials Science and Engineering for the 1990s, National Academy Press, Washington, D.C.
Ashby, M.F., 1979, The Science of Engineering Materials, pp. 19-48 in Science and Future Choice, Hemily, P.W. and Özdas, M.N., eds., North Atlantic Treaty Organization, Clarendon Press, Oxford, U.K.
Designing the Product
U.S. Congress Office of Technology Assessment, 1992, Green Products by Design: Choices for a CLeaner Environment, OTA-E-541, U.S. Government Printing Office, Washington, D.C.
Overby, C., 1990, Design for the Entire Life Cycle: A New Paradigm, 1990 ASEE Annual Conference Proceedings, Industrial & Systems Engineering Dept., Ohio University, Athens, OH.
Recovering the Material
Barsotti, A.F. and Kalyoncu, R., 1995, Implications of Flue Gas Desulfurization on the Mineral Industries, Available from Minerals Information Office, U.S. Geological Survey, Reston, VA.
Council for Agricultural Science and Technology, 1995, Waste Management and Utilization in Food Production and Processing, CAST, Ames, IA.
Philbin, M.L., 1995, Sand Reclamation 1995: Is it Time for Your Foundry?, Modern Casting 85:25-9.
Allen, D.T. and Behamanesh, N., 1994, Wastes as Raw Materials, pp. 68-96 in The Greening of Industrial Ecosystems, Allenby, B.R. and Richards, D.J., eds., National Academy Press, Washington, D.C.
Lave, L., Hendrickson, C.T., and McMichael, F.C., 1994, Rethinking How We Recycle, Environmental Science and Technology 28(1):19A-24A.
Hager, J.P., et al., eds., 1994, Extraction and Processing for the Treatment and Minimization of Wastes, The Minerals, Metals, and Materials Society, Warrendale, PA.
Ahmed, I., 1993, Use of Waste Materials in Highway Construction, Noyes Data Corporation, Park Ridge, NJ.
Butterwick, L. and Smith, G.D.W., 1986, Aluminum Recovery from Consumer Waste: Technology review, Conservation & Recycling 9(3):281-92.
Markets and Information
Frosch, R.A., 1996, Toward the End of Waste: Reflections on a New Ecology for Industry, Daedalus 125(3):199-212.
USEPA, 1994, Review of Industrial Waste Exchanges, EPAReport no. EPA-530-K-94-003, Waste Minimization Branch, Office of Solid Waste, USEPA, Washington, D.C.
Beckerman, W., 1992, Pricing for Pollution: An Analysis of Market Pricing and Government Regulation in Environment Consumption and Policy, Institute for Economic Affairs, London, U.K.
JETRO (Japan External Trade Organization), 1992, Ecofactory-Concept and R&D Themes, special issue of New Technology, FY 1992, Ecofactory Research Group, Agency of Industrial Science and Technology, Tokyo, Japan.
Page, T., 1977, Conservation and Economic Efficiency: An Approach to Materials Policy, Published for Resources for the Future by the Johns Hopkins University Press, Baltimore, MD.
Business and Finance
Richards, D.J., ed., The Industrial Green Game: Implications for Environmental Design and Management, National Academy of Engineering, National Academy Press, Washington, D.C., in press.
Allenby, B.R., Evolution of the Private Firm in an Environmentally Constrained World, in The Industrial Green Game: Implications for Environmental Design and Management, D.J. Richards, ed., National Academy Press, Washington, D.C., in press.
Battelle Pacific Northwest Laboratory, 1996, The Source of Value: An Executive Briefing and Sourcebook on Industrial Ecology, Prepared for the Future Studies Unit, Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency by Battelle, Pacific Northwest Laboratory, Richland, WA.
Fiksel, J., ed., 1996, Design for Environment: Creating Eco-Efficient Products and Processes, McGraw-Hill, New York.
Guile, B.R. and Cohon, J.L., 1996, Services and the Environment: More Questions Than Answers, Available from the National Academy of Engineering, Washington, D.C.
Bravo, C.E., 1995, A View of the United States Postal Service as a Service Sector Corporation, presented at the Fourth Annual National Academy of Engineering Workshop on Industrial Ecology, July 5-7, Woods, Hole, MA.
Ditz, D., Ranganathan, J., and Banks, R.D., 1995, Green Ledgers: Case Studies in Corporate Enronmental Accounting, World Resources Institute, Washington D.C.
Porter, M.E. and van der Linde, C., 1995, Green and Competitive: Ending the Stalemate, Harvard Business Review, September-October 1995, pp. 122-134.
Porter, M.E. and van der Linde, C., 1995, Toward a New Conception of the Environment-Competitiveness Relationship, Journal of Economic Perspectives 9(4).
Rejeski, D., 1995, The Forgotten Dimensions of Sustainable Development: Organizational Learning and Change, Corporate Environmental Strategy, 3(1):19-29.
National Academy of Engineering, 1994, Corporate Environmental Practices: Climbing the Learning Curve, National Academy Press, Washington, D.C.
Romm, J.J., 1994, Lean and Clean Management: How to Boost Profits and Productivity by Reducing Pollution, Kodansha America, New York.
Walley, N. and Whitehead, B., 1994, It’s Not Easy Being Green, Harvard Business Review May-June 1994 pp. 46-52.
3M Corporation, 1982, Low- or Non-Pollution Technology Through Pollution Prevention: An Overview, 3M Corporation, St. Paul, MN.
Regulation and Law
Allenby, B.R. and Graedel, T.E., 1996, The Policy Implications of Industrial Ecology.
Andrews, C., 1994, Policies to Encourage Clean Technology, pp. 405-423 in Industrial Ecology and Global Change, Socolow, R., Andrews, C., Berkhout, F., and Thomas V., eds., Cambridge University Press, New York.
U.S. Congress, Office of Technology Assessment, 1995, Environmental Policy Tools: A User’s Guide, OTA Report no. OTA-ENV-634, US GPO, DC.
Portney, P, (ed.), 1990, Public Policies for Environmental Protection, Resources for the Future, Washington, DC.
Vig, N.J. and Kraft, M.E., 1990, Environmental Policy in the 1990s, Congressional Quarterly inc., Washington, DC.
Lester, J.P., 1989, Environmental Politics and Policy, Duke University Press, Durham, NC.
Rejeski, D., 1996, Clean Production and the Command-and-Control Paradigm, in Environmental Management Systems and Cleaner Production, John Wiley and Sons, New York.
Hodges, C.A., 1995, Mineral Resources, Environmental Issues, and Land Use, Science 268:1305-12.
Wilt, C. and Davis, G., 1995, Extended Producer Responsibility: A New Principle for a New Generation of Pollution Prevention, Proceedings of the Symposium on Extended Producer Responsibility, Washington, D.C., Nov. 14-15, 1995.
Esty, D.C., 1994, Greening the GATT: Trade, Environment, and the Future, Institute for International Economics, Washington, D.C.
National Academy of Engineering, 1994, Industrial Ecology: US/Japan perspectives, National Academy Press, Washington, D.C.
Lifset. R., 1993, Take it Back: Extended Producer Responsibility as a Form of Incentive-Based Environmental Policy, Journal of Resource Management and Technology, 21(4):163-175
President’s Commission on Environmental Quality, Deland, M.R., Chairman, 1993, Partnerships to Progress: The Report of the President’s Commission on Environmental Quality, Executive Office of the President, Washington D.C.
President’s Commission on Environmental Quality, Derr, K.T., Chairman, 1993, Total Quality Management: A Framework for Pollution Prevention, Executive Office of the President, Washington D.C.
MacDonald, G.J., 1989, Policies and Technologies for Waste Reduction and Energy Efficiency, MITRE Corporation, McLean, VA.
Regional Strategies
Lowe, E., et al., 1995, Fieldbook for the Development of Eco-Industrial Parks V. II, Final Report, Indigo Development, Research Triangle Institute Project Number 6050, Research Triangle Park, NC.
Cote’, R., et al., 1994, Designing and Operating Industrial Parks as Ecosystems, School for Resource and Environmental Studies, Faculty of Management, Dalhousie University, Halifax, Nova Scotia B3J 1B9.
Technology Studies (General and Specific)
General
AT&T Technical Journal, November/December 1995, Volume 74, Number 6, Special Issue-AT&T Technology and the Environment.
Fresenius Environmental Bulletin, 1993, Special issue on materials, 2(8):407-490.
Specific
Swan, C., 1996, Transportation Transformation, Ten Speed Press, Berkeley, CA.
Lovins, A.B., Barnett, J.W., and Lovins, L.H., 1995, Supercars: The Coming Light-Vehicle Revolution, Rocky Mountain Institute, Snowmass, CO.
Microelectronics and Computer Technology Corporation, 1993, Environmental Consciousness: A Strategic Competitiveness Issue for the Electronics and Computer Industry, The Microelectronics and Computer Technology Corporation, Austin, TX.
Overcash, M.R., 1993, Net Waste Reduction Analysis Applied to Air Pollution Control Technologies, Journal of the Air & Waste Management Association 43:1449-1554
INFORM, 1992, Environmental Dividends: Cutting More Chemical Wastes, Dorfman, M.H., Muir, W.R., and Miller, C.G., eds., INFORM, New York.
Douglas, J.M. , 1988, Conceptual Design of Chemical Processes, McGraw-Hill, New York, NY.
Fathi-Afshar, S. and Yang, J.C., 1985, The Optimal Structure of the Petrochemical Industry for Minimum Cost and Least Gross Toxicity of Chemical Production, Chemical Engineering Science 40, 781.
INFORM, 1985, Cutting Chemical Wastes, INFORM, New York.
Overcash, M.R., 1985, Land Treatment of Wastes: Concepts and General Design, Journal of Environmental Engineering 111:141-160
Wastes (General )
General
Gottlieb, R., ed., 1995, Reducing Toxics, Island Press, Washington, D.C.
Rathje, W. and Murphy, C., 1992, Rubbish, Harper Collins, New York.
U.S. Congress, Office of Technology Assessment, 1992, From Pollution to Prevention: A Progress Report on Waste Reduction, OTA Report no. OTA-ITE-347, U.S. Government Printing Office, Washington, D.C.
U.S. Congress, Office of Technology Assessment, 1986, Serious Reduction of Hazardous Waste for Pollution Prevention and Industrial Efficiency, OTA Report no. OTA-ITE-317, U.S. Government Printing Office, Washington, D.C.
Consumers
Wernick, I.K., 1996, Consuming Materials: The American Way, Technological Forecasting and Social Change, 53(1).
Lebergott, S., 1993, Pursuing Happiness: American Consumers in the Twentieth Century, Princeton University Press, Princeton, NJ.
Durning, A., 1992, How Much is Enough? The Consumer Society and the Future of the Earth, W.W. Norton & Company, New York.
Uusitalo, L., 1986, Environmental Impacts of Consumption Patterns, St. Albans Press, New York.
Global Issues
Socolow, R., Andrews, C., Berkhout, F., and Thomas V., eds., 1994, Industrial Ecology and Global Change, Cambridge University Press, New York.
Waggoner, P.E., 1994, How Much Land Can Ten Billion People Spare for Nature, Council for Agricultural Science and Technology, Task Force Report no. 121, Ames, IA.
Ayres, R.U., 1992, Toxic Heavy Metals: Materials Cycle Optimization, Proceedings of the National Academy of Sciences of the USA 89(3):815-20, National Academy Press, Washington, D.C.
Forrest, D. and Szekely, J., 1991, Global Warming and the Primary Metals Industry, Journal of the Minerals, Metals, and Materials Society, 43(12):23-30.
General
Barsotti, A.F., 1994, Industrial Minerals and Sustainable Development, U.S. Bureau of Mines, Division of Minerals Commodities, Branch of Industrial Minerals, Washington, D.C.
Sawyer, D.T. and Martell, A.E., eds., 1992, Industrial Environmental Chemistry, Plenum Press, New York.
Hirschhorn, J.S., 1991, Prosperity Without Pollution: The Prevention Strategy for Industry and Consumers, Van Nostrand Reinhold, New York.
National Academy of Sciences, 1991, Industrial Ecology, Proceedings from NAS colloquium on industrial ecology held May 20-21, 1991, Washington, D.C.
VI. JOURNALS, DATA SOURCES, AND WEB RESOURCES
Journals
Environmental Science & Technology, Glaze, W. ed., American Chemical society
Scrap Recycling and Processing, Institute of Scrap Recycling Industries, A bi-monthly trade journal for the scrap reprocessing industry. Homepage: https://www.isri.org/pubcat00.htm#scrapmag
Selected Data Sources (General and Specific)
General
Organization for Economic Cooperation and Development (OECD), 1994, Environmental Indicators, Paris, France.
U.S. Bureau of the Census, 1975, Historical Statistics of the United States, Colonial Times to 1970, U.S. Government Printing Office, Washington, D.C.
U.S. Bureau of the Census, Annual editions, Statistical Abstract of the United States, U.S. Government Printing Office, Washington, D.C.
Council on Environmental Quality, Annual editions, Environmental Quality, U.S. Government Printing Office, Washington, D.C.
Specific
INFORM, 1995, Toxics Watch 1995, INFORM, New York.
Allen, D.T. and Jain, R.K., eds., 1992, Special Issue on National Hazardous Waste Databases, Hazardous Waste & Hazardous Materials 9(1):1-111.
American Petroleum Institute, 1992, Generation and Management of Wastes and Secondary Materials: Petroleum Refining Performance 1989 survey, API, Washington, D.C.
U.S. Congress, Office of Technology Assessment, 1992, Managing Industrial Solid Wastes from Manufacturing, Mining, Oil and Gas Production, and Utility Coal Combustion, OTA Report no. OTA-BP-O-82, U.S. Government Printing Office, Washington, D.C.
U.S. Environmental Protection Agency, 1992, Characterization of Municipal Solid Waste in the United States: 1992 Update, Final Report, EPA Report no. 530-R-92-019, USEPA, Washington, D.C.
U.S. Bureau of Mines, 1991, Minerals Yearbook 1991, U.S. Government Printing Office, Washington, D.C.
Franklin, W.E., and Associates, 1990, Paper Recycling: The View to 1995, Summary Report, Prepared for the American Paper Institute Feb. 1990, Prairie Village, KS.
U.S. Environmental Protection Agency, 1990, Report to Congress on Special Wastes from Mineral Processing, Summary and Findings, Methods and Analysis, EPA Report no. 570-SW-90-070C, USEPA, Washington, D.C.
U.S. Environmental Protection Agency, 1988, Report to Congress: Solid Waste Disposal in the Unites States, Vols. 1-2, EPA Report no. EPA/530-SW-89-033A, USEPA, Washington, D.C.
U.S. Environmental Protection Agency, 1986, Waste Minimization: Issues and Options, EPA Report no. 530-SW-86-04, USEPA, Washington, D.C.
Chemical Manufacturers Association, Annual editions, United States Chemical Industry Statistical Handbook, Chemical Manufacturers Association, Washington, D.C.
U.S. Bureau of Mines, Annual editions, Mineral Commodity Summaries, U.S. Government Printing Office, Washington, D.C.
U.S. Bureau of Mines, Annual editions, Mineral Facts and Problems, U.S. Government Printing Office, Washington, D. C.
The Department of Energy Efficiency and Renewable Energy Network (EREN) https://www.eren.doe.gov
Oak Ridge National Laboratory CADDET (Database of demonstration projects on energy efficient and renewable energy technologies) https://www.ornl.gov/CADDET
David T. Allen is a Professor of Chemical Engineering at the University of Texas at Austin. From 1987 to 1995 Dr. Allen led the Waste Reduction Engineering research effort at the University of California at Los Angeles.
Braden R. Allenby is Vice President for Environment, Safety, and Health at AT&T. Formerly, Dr. Allenby directed the Office of Energy and Environmental Systems at Lawrence Livermore National Laboratory. Dr. Allenby has written and lectured widely on industrial ecology, especially as it relates to the electronics industry.
Jesse H. Ausubel directs the Program for the Human Environment at The Rockefeller University in New York City, where he has led a series of studies exploring how technology can spare demand for materials, energy, land, and other resources.
Robert U. Ayres is Sandoz Professor of Management and the Environment at the European Institute of Business Administration (INSEAD) near Paris. Dr. Ayres has pioneered studies of marterials flows, especially of heavy metals.
R. Darryl Banks directs the program for Technology and the Environment at the World Resources Institute in Washington DC, having served earlier as one of New York State’s top environmental officials. His recent work has included studies of improving methods for corporate environmental accounting.
Faye Duchin is Dean of the School of Humanities and Social Sciences at Rensselaer Polytechnic Institute. An economist, Prof. Duchin has developed numerous applications of input-output modeling, including to issues of environmentally sound development, in the United States as well as developing countries.
John R. Ehrenfeld directs the Program on Technology Business & Environment at the Center for Technology Policy & Industrial Development at the Massachusetts Institute of Technology. Dr. Ehrenfeld’s research focuses on the way businesses manage environmental concerns and implement organizational and technological changes to improve their environmental performance.
Peter Eisenberger directs the Earth Institute as well as the Lamont Doherty Earth Observatory, both at Columbia University. Formerly, Dr. Eisenberger headed the Princeton Materials Institute and worked as an industrial research physicist investigating the properties of materials.
Robert A. Frosch, a Senior Research Fellow at the John F. Kennedy School of Government at Harvard University, earlier served as Vice President for Research of General Motors. Dr. Frosch also serves as leader of Industrial Ecology project in the Technology and Environment Program at the National Academy of Engineering.
Thomas E. Graedel is Professor of Industrial Ecology at the Yale School of Forestry & Environmental Studies. While a member of the technical staff at AT&T Bell Laboratories, Dr. Graedel published more than two hundred articles in areas ranging from atmospheric chemistry to environmental life cycle assessment, and co-authored the first university textbook on industrial ecology.
Bruce R. Guile is managing director of the Washington Advisory Group, a consultancy specializing in management of technology and research. From 1989-1995, Dr. Guile served as director of programs for the National Academy of Engineering. He edits the policy perspectives section of the Journal of Industrial Ecology.
Reid Lifset is Associate Director of the Industrial Environmental Management Program at the Yale School of Forestry & Environmental Studies and editor of the Journal of Industrial Ecology. His research focuses on the application of industrial ecology and policy analysis to solid waste problems in the United States.
David Rejeski serves in the White House Office of Science and Technology Policy where he works on developing and implementing the National Environmental Technology Strategy. Formerly Mr. Rejeski headed the Office of Policy, Planning, and Evaluation at the US EPA.
Deanna Richards directs the Technology and Environment program at the US National Academy of Engineering (NAE). Dr. Richards has published in the area of advanced biological wastewater treatment systems and overseen the publication of several volumes on industrial ecology at the NAE.
Robert H. Socolow directs the Center for Energy and Environment Studies at Princeton University. Dr. Socolow has published widely on technology-environment interactions, especially in the field of energy, and was a contributing editor to Industrial Ecology and Global Change.
Iddo Wernick is a Research Associate in the Program for the Human Environment at The Rockefeller University and a Research Scientist with Columbia’s Earth Institute. A physicist by training, Dr. Wernick’s research has focused on materials production and usage in the United States.
Figures
Figure 1. Chlorine process-product flows for Western Europe 1992 (kMT Chlorine content). The figure (left to right) indicates the processes and quantities involved in chlorine chemical production. The figure demonstrates that even large and complex materials flow streams such as those for chlorine can be successfully tracked and accounted for, thus indicating where system losses occur. Rectangles refer top chemical processes for conversion and circles refer to products. Source: Ayres, R.U. and Ayres, L.W., The Life-Cycle of Chlorine: Part I-IV, Journal of Industrial Ecology, in press.Figure 2. The spaghetti diagram indicates the flows of metals among a sample of metals processors in New England. The arrows indicate the direction of the flow, while the number of lines indicate the magnitude. Note the presence of waste reclaimers, dismantlers, and scrap dealers that allow for system closure. Source: Frosch, R.A., Clark, W.C., Crawford, J., Tschang, T.T., and Weber, A., 1996, The Industrial Ecology of Metals: A reconnaissance, From a talk delivered at the Royal Society/Royal Academy of Engineering meeting, May 29-30, London, U.K.Figure 3. Material flows in the US forest products industry, 1993. Box heights are to scale. All values in million cubic meters. For paper we consider one metric ton to be equivalent to two cubic meters. a) Based on the ratio of logging residues (15.1%) and `Other Removals’ (6.6%) to all removals for 1991. b) The dashed lined entering paper represents the inputs from “recycled.” We estimate that 100 million cubic meters of the woody mass entering paper mills undergoes combustion for energy. In 1991 the paper industry (SIC 26) generated over 1.2 quadrillion Btu from pulping liquors, chips, and bark. c) Construction includes millwork such as cabinetry and moldings. `Other’ includes industrial uses such as materials handling, furniture, and transport. d) The ratio of end uses relies on Btu data from the USDOE Energy Information Administration. The category `Residential and Commercial’ includes Electric Utilities. Sources: Ince 1994; Energy Information Administration 1994; U.S. Department of Agriculture 1993; U.S. Bureau of the Census 1995; Amer. Forest & Paper Assoc., 1995; Smith et. al. 1994; and data from the Engineered Wood Products Assoc., Tacoma WA. and the Western Wood Products Assoc., Portland, OR.Figure 4. This figure shows world cadmium consumption by end use. Source: Cadmium Market Update Analysis and Outlook, Roskill Information Services Ltd., 1995, London.Figure 5. T.K. Sherwood empirically identified a relationship between the selling prices of materials and their dilution (or degree of distribution in the initial matrix from which they are separated). The diagonal line denotes this empirically observed linear relationship. The data points indicate the minimum concentration of metals wastes typically recycled as a function of metal price. Points lying above the line indicate the existence of metals in wastes typically not recycled even though their concentration exceeds those found in virgin ores. Source: Allen, D.T. and Behamanesh, N., 1994, Wastes as Raw Materials, pp. 68-96 in The Greening of Industrial Ecosystems, Allenby, B.R. and Richards, D.J., eds., National Academy Press, Washington, D.C..[Key for chemical symbols: As-arsenic, Ag-silver, Ba-barium, Be-beryllium, Cd-cadmium, Cr-chromium, Cu-copper, Hg-mercury, Ni-nickel, Pb-lead, Sb-tin, Se-selenium, Tl-tellurium, V-vanadium, Zn-zinc]Figure 6. A schematic diagram of the industrial ecopark located in Kalundborg, Denmark. The figure shows the industrial concerns that occupy the park, the materials and energy flows between them, and the nature and fate of outgoing material and energy streams. After Allenby, B.R. and Graedel, T.E., 1994, Defining the Environmentally Responsible Facility, AT&T, Murray Hill, NJ.