The Great Reversal: Nature’s Chance to Restore Land and Sea

This essay was first prepared as a keynote address entitled “Robust Earth”, presented at the Open Science Conference of the Global Change Program (GCTE & LUCC) on 16 March 1998 in Barcelona, Spain. The marine section of the paper was added after the Barcelona meeting. The final version of the paper appears in the journal Technology In Society, Vol. 22:289-301, 2000.

In the middle of the 20th century, humans began to reverse the pattern they followed for millennia of extending further into nature to meet needs for food and materials. Recognizing this Great Reversal, I explore the areas in human use for cities, logging, and farming and search the centuries for principles and trends to forecast land use in the latter part of the 21st century when global population may number 10 billion. Offsetting the sprawl of cities, rising yields in farms and forests and changing tastes can release large amounts of land. For example, with growing population and cities, the USA in the next century could still newly spare for nature an area twice the size of Spain. Shifting from hunting to farming fish can similarly spare nature. Globally, wise and intelligent humanity can extend the Great Reversal into a Great Restoration of nature on land and in the sea.

Introduction

The American writer Gertrude Stein remarked around 1930 that the United States was already the oldest country in the world, because it had been in the 20th century longer than any other. Studying changes in the American landscape, I have become convinced that a Great Reversal is underway. For centuries Americans extended into the landscape as they became more numerous and sought more food, fuel, fiber, and other materials. In about 1950 Americans began to contract. In this essay I explore the global chance for a Great Reversal. This Great Reversal might liberate the environment from an important fraction of the disruption that humans cause.[1]

I simplify my task by focusing on area, hectares or square kilometers. I believe an areal measure of land actively used for cities, logging, and farming is the best single measure for environmental impact. Generally speaking, the smaller the total area in active human use, the more environmentally friendly will be the landscape.

To show why and how we can spare land, I will search the past century for principles and trends influencing building, logging, and farming and contemplate about 70 years into the future, when people may number 10 billion. Then I extend the logic to the oceans. Because the USA may presage the future, many of my examples are American.

Cities

The built environment, “cities” for short, includes land not only for roads, shopping centers, and dwellings, but also for lawns, town gardens, and parks. In the USA the covered land per capita ranges from about 2,000 m2 in states where travel is fast, such as Nebraska, to about 600m2 in slower, more urban New York.[2] The 30 million Californians, who epitomize sprawl, in fact average 628m2 of developed land each, about the same as New Yorkers.

The transport system and the number of people basically determine covered land. Greater wealth enables people to buy higher speed, and when transit quickens, cities spread. Both average wealth and numbers will grow, so cities will take more land.

What are the areas of land that may be built upon? The USA is a country with a fast growing population, and expects about another 100 million people over the next 70 years. At 600m2 each, the USA increase would consume 6 million hectares, about the land area of Belgium plus the Netherlands or five Connecticuts. Globally, if everyone new builds at the present California rate, the 4 billion added to today’s 6 billion people would cover about 240 million hectares, midway in size between Mexico and Argentina.

By enduring crowding, urbanites spare land for nature. In fact, migration from the country to the city formed the long prologue to the Great Reversal. Towering urbanites could spare more land. Still, cities will take from nature. Can changes in logging and farming offset the urban sprawl?

Forests

To shed light on changes of forested area, I ask first does multiplying the number of people or wealth equally multiply the use of the products taken from the forest? The answer to this question comes by dissecting historic growth in demand. This growth is the product of an identity: population multiplied times GDP per person multiplied times the timber product per GDP.

First consider the USA consumption of the four timber products: lumber, plywood and veneer, pulp products, and fuel.[3] Between 1900 and 2000 the national use of timber products grew about 70%. Large features of the century include the big growth of pulp—that is, paper and paperboard—and the small growth of lumber. Fuel wood use nearly disappeared and then re-emerged, mostly to power pulp and paper mills. Plywood consumption emerged but remained small.

The preeminent feature is that the consumption of timber products rose far less than the rises in population and wealth might suggest. At the end of the century, Americans numbered more than three and a half times as many as at the beginning, and an American’s average share of GDP had grown nearly five fold. Had timber consumption risen in constant proportion, Americans would have consumed about 16 times as much timber each year in the 1990s as in 1900, rather than the 1.7 times they actually consumed.

The explanation for the difference lies largely in the third term in the identity mentioned above, the product consumed per unit of GDP, for example, pulp/GDP. If this term, which I will call “intensity of use”, is constant, then consumption will rise in unchanging proportion to the combined rise of population and wealth.

Practically, what changes timber product per GDP? In the case of lumber, its replacement during the century by steel and concrete in applications from furniture and barrels to cross ties and lath lowered the intensity of use. Living in the stock of existing houses and prolonging the life of timber products by protecting them from decay and fire lower it. In the case of pulp, more widespread literacy and the shift to a service economy raised the intensity of use in the early 20th century. Thicker paper replaced thinner paper, and newspapers replaced oral gossip. More recently, thinner paper has again replaced thicker paper, and television has replaced newspapers, lowering the intensity of pulp per GDP. More generally, the onset of dematerialization, as telephones and magnetic files replace letters and manuscripts, is lowering it. Because both writing and packaging consume much pulp, both are opportunities for further improvements in intensity of use.

Overall, history shows the extent of forests in the USA changed little in the 20th century (Figure 1). Meanwhile, reversing hundreds of years of depletion, the volume of wood on American timberland has actually risen, by 36% since 1950. The main reason the forest has grown rather than shrunk is that on average a contemporary American annually consumes only half the timber for all uses as a counterpart in 1900. Meanwhile millers learned to get more product from the same tree, and foresters grew more wood per hectare. Already many areas initially cleared have regenerated, as evidenced by today’s large wooded areas in New England and the upper Great Lakes states. What is the woodland prospect?

Great opportunities seem open for forestry to raise yields and so further decouple demand for timber from demand for land. On a hectare of USA timberland, annual growth currently averages about 3 m3 of wood. Rates 10 to 20 times faster have been reported for trees as diverse as alder, poplar, eucalyptus, hemlock, and loblolly pine. Strategies as simple as ridges to improve drainage in wet soils speed growth. Sylvaculture could be at the beginning of a march of rising yields as agriculture was about 1940.

In the USA the plausible anticipation of a falling intensity of use for forest products should more than eliminate the effects of growing population and affluence, leading to an average annual decline of perhaps 0.5% in the amount of timber harvested for products. A conservative 1.0% annual improvement in forest growth would compound the benefits of steady or falling demand and could shrink the area affected by logging 1.5% annually. Compounded, the 1.5% would shrink the extent of logging by half in 50 years. If only one half of this amount occurs by leaving areas now cut uncut, the area spared is 50 million hectares, 8 times the area USA cities will cover, and about the combined area of the States of Washington, Oregon, and Maine, or the size of Spain. Compounding 20 more years would spare 20 million more hectares.

If we accept Gertrude Stein’s view of the American experience, forest regrowth appears part of modernity. In fact, studies of forest biomass for the decade of the 1990s in the boreal and temperate region in more than 50 countries show the forests expanding in every one.[4] Globally, rising productivity of well-managed forests should comfortably allow 20% or less of today’s forest area of about 3 billion hectares to supply most world commercial wood demand sustainably in the middle of the 21st century.[5] Wise and intelligent logging advances the Great Restoration.Farms

Farms

Now consider farms. Although farmers cannot recreate virgin land, they can allow wide returns of land to nature by the steady movement toward landless agriculture. For millennia land equated in stable proportion with food, so more mouths meant more hectares farmed, and land cropped per person expanded when each mouth sought a more ample diet. Then, in a global Great Reversal, fifty years ago farmers stopped plowing up more nature per mouth (Figure 2).

Yields per hectare measure the productivity of land and the potential for the Great Restoration. During the past half century, ratios of crops to land for the world’s major grains-corn, rice, soybean, and wheat-climbed fast and globally. Per hectare world grain yields rose almost 2 percent annually between 1960 and 1997. Between 1971-1995 the yields for an index of all crops rose annually about 1.7 percent in the USA and 2.1 in Mexico while speeding upward 2.8 percent in India and 3.4 in both Indonesia and China.

As fast as farmers advance, their horizon keeps opening. Take the case of corn. Since 1960, while rising in tandem, the average world farmer grew about half the corn per hectare of the average Iowa farmer, and the average Iowa farmer grew about half the corn of his most productive neighbor. The 1990s began in Iowa with an apparent corn ceiling of about 15 tons per hectare (t/ha). But master farmers thrust through this and subsequent ceilings six times in the decade. In 1999 the Iowa master corn grower, Mr. Francis Childs, broke the state record with 24.7 t/ha.[6] In fact USA farmers achieved many corn yield records in 1999, though faced with huge weather obstacles including late planting due to spring rains in some areas and severe drought later in the growing season in others.

Mr. Childs fertilized abundantly, inspected the growing crop more than twenty times, and controlled pests. He grew his crop without irrigation. He did grow three times as many plants on each hectare as his grandfather would have grown. Mr. Childs and his fellow Iowans do not monopolize high yields. Winners in carefully scrutinized national contests have regularly exceeded 20 t/ha since 1996 in locales as diverse as arid Tonopah, Arizona and changeable Sterling, Nebraska.

The diffusion of current best practice will occupy farmers for many decades. Because improving 2 percent per year means a doubling of performance in about 40 years, on the same area the average world farmer now grows about the same amount of corn as the average Iowa farmer grew in 1960, while the average Iowa farmer now grows about the same amount his most productive neighbor achieved in 1960.

The productivity gains have stabilized global cropland since mid-century, as shrinkage in nations as diverse as the USA, Italy, and Colombia have offset expansion in Brazil, Tanzania, and elsewhere. In essence, a cluster of innovations including tractors, seeds, chemicals, and irrigation, joined through timely information flows and better organized markets, raised the yields to feed billions more without clearing new fields.

Will high-yield agriculture tarnish the land? Farmers do many things on each area of land that they crop. In general, higher yields require little more clearing, tilling, and cultivating than lower yields. Protecting a plot of lush foliage from insects or disease requires only a little more pesticide than does sparse foliage. Keeping weeds from growing in deep shade beneath a bumper crop may require less herbicide per field than keeping them from growing in thin shade. The amount of water consumed is more or less the same per area whether the crop is abundant or sparse. Growing higher yields distills away only a little more water and leaves only a little more salt than lower yields.

Seed is planted per plot; choosing a higher yielding variety need not affect the surroundings. If the improved variety resists pests, it lessens the external effects of pesticides compared to a sprayed crop. By minimally changing the external effects of things that farmers do per area, lifting yields will thus lower effects per unit of yield.

Per plot, farmers do use more of some things, such as fertilizer, to raise the yield of their crops. For example, they have applied more nitrogen fertilizer per plot to raise yields. Americans appear to have reached or passed the point of diminishing returns for applications of nitrogen fertilizer. Since 1980 in the USA absolute nitrogen use has been level and per crop has declined. In fact, the key to lifting yields is usually the sound, complementary use of varieties, water, and fertilizer, and the declining fertilizer per USA crop production indicates better management of complementary factors. Globally, nitrogen use peaked in 1988, and the sum of world fertilizers, including phosphates and potash, remains about 10% below the peak a decade ago.

If land used for farming shrinks, water use will also tend to fall, although the fraction that is irrigated will rise. In the USA, where farmers use the largest share of water, both rising withdrawals and consumption reversed about 1970 (Figure 3). Despite gains in water use efficiency, the United States is far from most efficient practice. Water withdrawals for all users in the OECD countries range tenfold, with the USA and Canada the highest. Allowing for national differences in the major uses (irrigation, electrical cooling, industry, and public water supply), large opportunities for reductions remain.

Some blame meat for eating land. Like the demand for forest land, land used for meat is the product of an identity: population times wealth ($/person) times diet (kg meat/$) times feed conversion efficiency (kg feed/kg meat) times 1/crop yield (hectares per kg of feed). In the USA between 1967 and 1990, while MacDonald’s multiplied, US land used to make meat shrank. Population and wealth increased, but diet favored meat less, the feed needed to make meat declined, and the hectares needed to grow the feed lessened as yields rose. Net, about 2% less US land each year made meat.

Let me introduce one caution here: variability. The largest deviation of the Iowa average corn yield doubled from about 20% in the 1960s and 1970s to about 40% in the 1980s and 1990s. The largest deviation of a winning Master yield was only 7% during the earlier decades but was 27% during the later ones. Reducing the growing variability and lifting the mean challenge us to make the Restoration great.

Globally, the future for both lifting means and reducing variability lies with precision agriculture. This approach to farming relies on technology and information to help the grower use precise amounts of inputs—fertilizer, pesticides, seed, water—exactly where they are needed. Precision agriculture includes grid soil sampling, field mapping, variable rate application, and yield monitoring—tied to global positioning systems. It helps the grower lower costs and improve yields in an environmentally responsible way. At a soybean seminar in Dayton, Ohio, covered by the Associated Press on 10 February 1997, American farmers reported using one-third less lime after putting fields on square-foot satellite grids detailing which areas would benefit from fertilizer.

Technology revolutionized agriculture twice in the 20th century. The tractor and other machines caused the first. Nitrogen and other chemicals were responsible for the second. The third agricultural revolution is coming from information. What do the past and future agricultural revolutions mean for land?

US farmers, by raising grain yields, have spared about 150 million hectares since 1940 from what otherwise would have been needed: an area 3 times the size of Spain. Alternately, compare a US city of 500,000 people in 2000 and the same city of 500,000 people with the 2000 diet and the yields of 1920. Farming as Americans did 80 years earlier while eating as we do now would require 4 times as much land, about 450,000 hectares instead of 110,000. Looking to a US 70 years hence with 100 million more people and the 2000 diet, farmers will spare 4 times the area of Iowa or more than one Spain if they lift yields only 1%/yr.

What is the global outlook for restoration? If the world farmer reaches the average yield of today’s US corn grower during the next 70 years, ten billion people eating as people now on average do will need only half of today’s cropland. The land spared exceeds Amazonia. This will happen if farmers sustain the yearly 2% worldwide yield growth of grains achieved since 1960, in other words if social learning continues as usual. If the rate falls by one half, an area the size of India, globally, can still revert from agriculture to woodland or other uses. If the ten billion in 2070 prefer a meaty diet of 6,000 primary calories/day for food and fuel (twice today’s average primary calories), they roughly halve the land spared. A cautious global scenario of sustained yield growth and more calories still offers more than 10% of present world farmland, more than 10 Iowas or 3 Spains, for the Great Restoration.[7]

Seas

I have spoken about logging and farming the land well enough to spare habitat for nature. What about farming fish to spare fishes? Fishes here refer to cod but also other marine species from abalone to whales.

One compelling estimate of the consequences of fishing rather than farming the ocean: fish biomass in intensively exploited fisheries appears to be about 1/10th the level of the fish in those seas a few decades or hundred years ago. Diverse observations support this estimate. For example, the diaries of early European settlers describe marvelous fish sizes and abundance off New England in the 1600s. From Scotland to Japan, commercial records document enormous catches with simple equipment during many centuries. Even now, when fishers discover and begin fishing new places, they record easy and abundant catches, for example, of orange roughy on Pacific sea mounts. Also traditional scientific surveys of fish stocks indicate fewer and fewer spawning fish (mothers) compared to recruits, (their offspring). The ratio of spawners to recruits has fallen to 20% and even to 5% of its level when surveys began. Reasons abound to spare the sea as well as the land.

People know how to spare land’s animals. Many thousands of years ago our ancestors sharpened sticks and began hunting. They probably extinguished a few species, such as woolly mammoths, and had they kept on hunting, they might have extinguished many more. Then, ten thousand years ago our ancestors began sparing land animals by domesticating cows, pigs, goats, and sheep. By herding rather than hunting animals, humans began sparing wild animals, that is, nature. Today an average American annually eats 53 kgs of pork, beef, and lamb without hunting any of nature’s animals.[8] Americans also eat 27 kgs of poultry without endangering songbirds and consume 14 kgs of eggs without robbing ducks’ nests. Americans drink 266 kgs of milk in glasses or eat the equivalent cheese and ice cream without depriving calves of their mother’s milk.

In addition to the hundreds of kgs of meat and milk from the farmers on land, an American also eats meat from the fishers of the sea, but relatively little, only about 7 kgs in a year. Much of that 7 kgs, however, is taken from the wild schools of the sea, and that fraction of total diet, though small, depletes the oceans.

What does the world eat? In a year it now eats some 74 million tons of pigs; 50 of beef; and 12 of buffalo, goats, and sheep. It eats 186 million tons of poultry and 38 of eggs. Adding about 450 million tons of milk pushes the total over 800 million tons. How does world consumption of fish that depletes the oceans compare to the 800? About 80 million tons of fish are taken wild from the sea and 20 from fish farms and ranches. Although the world eats relatively more fish than Americans, the world consumption of 80 million tons of fish from the sea that depletes the oceans is still small compared to the consumption of over 800 from domesticated animals, a consumption that does not kill wild mammals or birds.

The ancient sparing of land animals by farming shows us how to spare the fish in the sea. We need to raise the share we farm and lower the share we catch.

Fish farming does not require invention. It has been around for a long time. The Chinese have been doing very nicely raising herbivores, such as carp, for centuries.

Following the Chinese example, one feeds crops grown on land by farmers to herbivorous fish in ponds. Much aquaculture of catfish near the Gulf Coast of the US and of carp and tilapia in Southeast Asia and the Philippines takes this form. The fish grown in the ponds spare fish from the ocean. Like poultry, fish efficiently convert protein in feed to protein in meat. And because the fish do not have to stand, they convert calories in feed into meat even more efficiently than poultry.[9] All the improvements such as breeding and disease control that have made poultry production more efficient can be and have been applied to aquaculture, improving the conversion of feed to meat and sparing wild fish.

Ponds are not the only arenas of aquaculture. Another form might be called fish ranching. An analogy of fish ranching might be grazing pigs. Running wild, about 10 hogs can share a hectare. Running wild, today’s world population of one billion hogs alone would require about one hundred million hectares, more than 1/5 the land of the USA. Running wild, growing herds denude landscapes. To decouple animal agriculture from damaging the land, farmers instead grow high yields of crops, such as corn and soybeans, to feed the animals.

In some fish ranching, notably most of today’s ranching of salmon, the salmon effectively graze the oceans, as the razorback hogs of a primitive farmer would graze the oak woods. Such aquaculture consists of catching wild “junk” fish or their oil to feed to our herds, such as salmon in pens. We change the form of the fish, adding economic value, but do not address the fundamental question of the tons of stocks. A shift from this ocean ranching and grazing to true farming of parts of the ocean can spare others from the present, on-going depletion.

I have already described fish farming in ponds. With due care for effluents, pathogens, and other concerns, this model can multiply many times in tonnage. In fact, with neatly closed systems on land the model is identical to much clean manufacturing except the machines are biological. Eventually we might grow fish in closed silos at high density, feeding them proteins made by micro-organisms grown on hydrogen, nitrogen, and carbon. The fish could be sturgeon filled with caviar.

The riskier and fascinating alternative, ocean farming, would actually lift life in the oceans. The oceans vary vastly in their present productivity. In many parts of the ocean crystal clear water enable a person to see 50 meters down. These are deserts. In a few garden areas, where one can see only a meter or so, life abounds. Water rich in iron, phosphorus, trace metals, silica, and nitrate makes these gardens dense with plants and animals. The “IronEx”periments of the 1990s demonstrated the extraordinary leverage of iron to make the oceans bloom.[10]

The meat productivity depends on two factors: the supply of food for fish (or shrimp, squid, or other eaters) in the garden and how efficiently the fish convert the food into meat. First consider the yield of fish food. Oceanographers estimate that as much as 60% of ocean life grows in 2% of the ocean surface. Production on average would then be more than 70 times as great in the 2% garden areas as in the 98% desert. In principle, fertilizing a nutrient-poor tropical ocean desert to the condition of, say, the Peruvian upwelling, could increase plant or phytoplankton yield more than 70 times to feed more fish.

The second factor setting productivity is the efficiency of turning phytoplankton into meat. The efficiency with which a kilogram of fish or other popular seafood emerges from a kilogram of phytoplankton depends both on the number of intermediaries or trophic levels in the system and on the conversion efficiency at each level. The range spans from a low of about 2% in the ocean deserts to 25% or more in the Peruvian upwelling and temperate shelf gardens, such as Georges Bank.[11] The difference between one hundred kilos of phytoplankton becoming 2 kgs of fish in the desert and 25 kgs in the garden is more than dozen-fold.

In the end to consider the potential of ocean farming we must multiply the potential changes in supply of food for fish by the potential changes in efficiency. If the garden can produce 70 times as much food for fish per hectare and can turn it into fish a dozen times more efficiently, an oceanic garden is potentially hundreds of times as productive as the oceanic desert. That is, adding the right nutrients in the right places might lift fish yields by a factor of hundreds. This is the way higher yields of crops per hectare and more productive farm animals have shrunken the area farmers must till to feed the world. And so spared land for nature.

Challenges abound because the ocean moves and mixes, both vertically and horizontally. Nevertheless, technically and economically promising proposals exist for farming on a large scale in the open ocean with fertilization in deep water. (The deep ocean currents can process the resulting rain of organic materials without becoming anoxic.) One kg of buoyant fertilizer, mainly iron with some phosphate, could produce a few thousand tons of biomass.[12]

Stimulating the growth of marine plants is the crucial first step to greater productivity. Zooplankton then graze on phytoplankton and the food chain continues until the sea teems with diverse life. Fertilizing 250,000 sq km of barren tropical ocean, the size of Colorado or about 3 times the Gulf of Maine, in principle might produce a catch matching today’s fish market of 100 million tons. Colorado is less than 1/10th of 1% of the world ocean. Along with its iron supplement, such an ocean farm would annually require about 4 million tons of nitrogen fertilizer, 1/20th of the synthetic fertilizers used by all land farms.

Still another proposition would turn a problem into an opportunity. Some scientists are decrying the leaking of plant nutrients from cities and farms into estuaries and gulfs. They worry that the decay of organisms encouraged by these nutrients will consume the oxygen in the water and smother fish. In these places where nutrients are considered a problem, why not turn the nutrients into an opportunity by learning how to grow and harvest fish in those waters to relieve what we now call pollution and lessen the demand to fish elsewhere?

The point is that the high levels of harvest of wild fishes and destruction of marine habitat to capture them need not continue. The 20% of seafood already raised by aquaculture signals the potential for Reversal. Following the example of farmers who spare land and wildlife by raising yields on land, we can concentrate our fishing in highly productive, closed systems on land and in a few highly productive ocean farms. Ecological engineers can tailor closed systems to grow the particular, tasty, high-priced species. Innovative ocean farmers can make fish cakes in bulk. Humanity can act to restore the seas, and thus also preserve traditional fishing where communities value it. With smart aquaculture, we can multiply life in the oceans while feeding humanity and restoring nature.

Conclusion

The logic for Reversal and Restoration is obvious and deep. Intelligent humanity made revolutions in productivity sweep all industries in the 20th century. We now stamp out cars like tin ducks and microchips too. Unnoticed by many, revolutions in productivity also penetrated forestry and farming. Combined with more efficient production chains and changes in consumer taste, rising yields began to allow us to meet demand for food, fiber, and fuel while using less land: the Great Reversal. The enlarging forests and abandoned farms in the US and in many other nations show it.

Because cities will take a few hundred million hectares more land for the 10 billion people of 2070, we need the Reversal to spread to more nations and for it to extend into a Great Restoration. In the US, foresters may offer 70 million hectares for nature and farmers that much or more. The net effect should be to allow a restoration of nature on land in the US exceeding the size of 100 Yellowstone National Parks or twice the area of Spain. Regional and national case studies could build a global picture. Reflecting the diffusion of productivity through industries around the world, the Great Reversal will surely happen at different times in different places and with different potential. Setting goals, such as a 300 million hectare or 10% expansion of the world’s forest area by 2070, may help.

Accomplishing the Great Restoration is the work of the 21st century for foresters, farmers, scientists, engineers, and all the other participants in the wood and food businesses. While avoiding the dangers of intensive cultivation, wise humanity can lift average yields toward the present limits and lift the limits even more. By sparing cropland, we can also spare water and nitrogen.

In the seas, the Reversal still lies ahead, but we can glimpse it. Fishers and all those who depend on the preservation of marine life must hasten its arrival and solve the many problems on the way to Restoration.

Consumers, of course, can also do their share. Changing tastes can lessen our demands on nature. For those who choose it, a vegetarian diet roughly halves land used for food. Drinking diet cola rather than apple juice, we need no land at all.

However tastes may evolve, high yields are the best friend of habitat. Recalling Gertrude Stein’s remark, the decoupling of the economy from acreage, well on its way for fifty years in the USA, creates nature’s chance to restore land and sea.

Acknowledgements: Michael Markels, Perrin Meyer, Paul Waggoner, Brian Walker, and Iddo Wernick.

Figure 1. First Picture – Reversal and restoration of USA forests.
Second Figure – U.S. Forest Land Area 1630-1997.





Sources of data: Sedjo (1995); Powell et al (1993). Inset: U.S. Forest Volume, Hardwoods and Softwoods, 1952-1997. Sources of data: Smith et al., 1994; Smith, 1999.

References for sources of data:

DS Powell, JL Faulkner, DR DARR, Z Zhu, and DW MacCleery. 1993. Forest Resources of the United States, 1992. USDA. Forest Service Report RM-GTR-234.

RA Sedjo. 1995. “Forests: Conflicting Signals,” in The True State of the Planet, edited

By R Bailey. New York: Free Press.

WB Smith, JL Faulkner, and DS Powell. 1994. “Forest Statistics of the United States, 1992,” USDA Forest Service Report GTR-NC-168.

Smith WB. 1997 RPA Assessment: The United States Forest Resource Current Situation. USDA Forest Service, Washington DC, 1999.

Figure 2. Reversal in area of land used to feed a person. After gradually increasing for centuries, the worldwide area of cropland per person began dropping steeply in about 1950, when yields per hectare began to climb. The square shows the area needed by the Iowa Master Corn Grower of 1999 to supply one person a year’s worth of calories. The dotted line shows how sustaining the lifting of average yields 2 percent per year extends the reversal.

Sources of data:

Food and Agriculture Organization of the United Nations, various Yearbooks.

National Corn Growers Association, National Corngrowers Association Announces 1999 Corn Yield Contest Winners, Hot Off the Cob, St. Louis MO, 15 December 1999 ;

JF Richards. 1990. “Land Transformations,” In The Earth as Transformed by Human Action, BL Turner II et al. eds., Cambridge University: Cambridge, UK.

Figure 3. Reversal in total U.S. Water Use, Per Capita, Per Day.

Sources of data:

U.S Bureau of the Census. 1975. Historical Statistics of the United States, Colonial Times to 1970. Washington, DC: U.S. GPO.

U.S Bureau of the Census. 1998. Statistical Abstract of the United States: 1998. (118th edition.) Washington, DC.

[1] Ausubel JH. For a discussion covering energy, materials, and other aspects along with land use see The Liberation of the Environment. Daedalus 1996;125(3):1-17.

[2] Waggoner PE, Ausubel JH, Wernick IK. Lightening the Tread of Population on the Land: American Examples. Population and Development Review 1996;22(3):531-545.

[3] Wernick IK, Waggoner PE, Ausubel JH. Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the U.S. Journal of Industrial Ecology 1998;1(3):125-145.

[4] UN-ECE/FAO. Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/boreal countries), contribution to the Global Forest Resources Assessment 2000. United Nations, New York, in press.

[5] Sedjo RA, Botkin D. Using Forest Plantations to Spare Natural Forests. Environment 1997;39(10): 14-20 and 30.

[6] National Corn Growers Association, National Corngrowers Association Announces 1999 Corn Yield Contest Winners, Hot Off the Cob, St. Louis MO, 15 December 1999 ; on line at https://www.ncga.com/archives/news991215.html

[7] Frink CR, Waggoner PE, Ausubel JH. Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences USA 1999;96:1175-1180.

[8] US Department of Agriculture, Agriculture Statistics. Washington DC, 1990, p. 471.

[9] Lovell T. Nutrition and Feeding of Fish, Van Nostrand Reinhold, New York, 1989. p. 6: Weight gain/g food, protein gain/g protein as follows: channel catfish 0.84, 0.36; broilers 0.48, 0.33; beef 0.13, 0.15.

[10] Martin JH et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 1994; 371:123-129.

[11] Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature 1995; 374:255-257

[12] Markels, Jr., M. Method of improving production of seafood. US Patent 5,433,173, July 18, 1995, Washington DC.

Industrial Ecology: Some Directions for Research

May 1997 – Pre Publication Draft

Prepared by:

Iddo K. Wernick and Jesse H. Ausubel
Program for the Human Environment, The Rockefeller University
with the Vishnu Group for the Office of Energy and Environmental Systems, Lawrence Livermore National Laboratory

ISBN 0-9646419-0-7

Vishnu Group
David T. Allen, University of Texas at Austin
Braden R. Allenby, Lawrence Livermore National Laboratory and the AT&T Corporation
Jesse H. Ausubel, The Rockefeller University
Robert U. Ayres, European Institute of Business Administration
R. Darryl Banks, World Resources Institute
Faye Duchin, Rensselaer Polytechnic Institute
John R. Ehrenfeld, Massachusetts Institute of Technology
Peter M. Eisenberger, Columbia University
Reid Lifset, Yale University
Robert A. Frosch, Harvard University
Thomas E. Graedel, Yale University
Bruce R. Guile, Washington Advisory Group
David Rejeski, Office of Science and Technology Policy
Deanna J. Richards, National Academy of Engineering
Robert H. Socolow, Princeton University
Iddo K. Wernick, The Rockefeller University

Foreword

The recent diffusion of the term “industrial ecology” stems from its use by physicist Robert Frosch in a paper on environmentally favorable strategies for manufacturing co-authored with Nicholas Gallopolous published in September 1989 in Scientific American. Frosch embraced the concept of “industrial metabolism” which Robert Ayres has developed to organize thinking about the massive, systematic transformations of materials in modern economies. Industrial metabolism as well as dematerialization (the diminishing amount of material required for a good or service) had been explored at an August 1988 workshop of the National Academy of Engineering chaired by Frosch (Ausubel and Sladovich, 1988). Frosch sought a term that conveyed not only the sense of transformation but also the networks of actors doing the producing and consuming – or disposal – of materials and associated energy.

The new term resonated. The National Academy of Sciences, in association with the AT&T Corporation, convened a “Colloquium on Industrial Ecology” chaired by Kumar Patel in May of 1991 to consider the subject more fully. The Colloquium addressed optimization of the total materials cycle, from virgin to finished material, including components, products, waste products, and ultimate disposal (PNAS 89(3), 793-884, 1992).

During the past few years, a growing number of researchers as well as practicing engineers and managers have been attracted to “industrial ecology.” The term appears to offer a framework within which to improve knowledge and decisions about materials use, waste reduction, and pollution prevention. Some dozen workshops, many organized by NAE, have explicitly addressed aspects of industrial ecology. These include applicability in selected manufacturing sectors, applicability in services industries, environmentally symbiotic co-location of industries, comparative experiences in different nations, relationship to global environmental problems, and performance measures. Braden Allenby and Thomas Graedel codified much of the early knowledge in a 1995 textbook. Several universities and other research institutions now have courses or programs in industrial ecology. The U.S. government’s National Environmental Technology Strategy endorsed the concept. A Journal of Industrial Ecology has been established as well as a fellowship program. Swiss journalist Suren Erkman (serkman@mail.vtx.ch) has built a database of relevant publications containing over one thousand items. Popular articles have appeared in newspapers and magazines, and even a sociological review (O’Rourke et al, 1996) .

Of course, no subject is wholly new, and antecedents have been traced. Importantly, individuals with similar and related interests in numerous countries have joined the discussion.

In this period of maturation, a group of us who have participated in the growth of industrial ecology (calling ourselves the Vishnu Group, for the Hindu deity embodying preservation) agreed in December of 1995 that it could be useful to outline research directions for the field. Notwithstanding the existence of much research planning in fields of environmental science and technology, we found little language that addressed the needs we see. The interest of the US Department of Energy, and Lawrence Livermore National Laboratory in particular, to learn more about industrial ecology provided the occasion and generated the needed financial support. The Program for the Human Environment at The Rockefeller University agreed to serve as the hub for the activity. We met twice as a group and interacted extensively in smaller meetings and through telecommunications. Iddo Wernick took the lead in drafting the report.

We speak about issues and problems rather than disciplines. We believe people with diverse backgrounds, skills, and specialized knowledge from physical and life sciences, engineering, and social sciences as well as industrial practice will all contribute to the advancement of industrial ecology. Many of the problems will benefit from analysis by teams combining fields of expertise. Universities, government laboratories, and both for-profit and not-for-profit private sector research groups may all find areas appropriate for their labors.

We are well aware that researchers are conducting a considerable amount of high-quality, relevant work in Austria, Canada, Denmark, Netherlands, Japan, Germany, Italy, Switzerland and other countries. Although some of this is represented in the bibliography, we have not had the time or means to carry out a systematic global survey. We have tried to identify directions that soundly reflect the mix of industries and environmental issues that characterize the United States. We have yet to estimate the costs in human effort or dollars of the research envisioned. An obvious next step is to make such an assessment and to search for bargains.

We are grateful to numerous individuals for materials, comments, and suggestions. These include Stefan Anderberg (IIASA), David Berry (President’s Council on Environmental Quality), Raymond Cote (Dalhousie), Richard Dennison (Environmental Defense Fund), Peter Eisenberger (Columbia University), Suren Erkman (Geneva), Gregory Eyring (formerly US Office of Technology Assessment), Peter Ince (USDA Forest Service), Greg Keoleian (Michigan), Catherine Koshland (U. of California, Berkeley), Roberto Galli (Milan), Grecia Matos (Department of Interior), Donald Rogich (formerly US Bureau of Mines), Thomas Schneider (EPRI), Walter Stahel (Geneva), William Stigliani (IIASA & U. of Northern Iowa), Valerie Thomas (Princeton), and Paul Waggoner (Connecticut Agricultural Experiment Station). Karen Blades, Michael Fluss, T. J. Gilmartin,John Tennyson, and several of their colleagues Lawrence Livermore assisted on both substantive and practical matters. We all owe a debt of gratitude to Braden Allenby, whose energy, scope, and determination account for much of the development of industrial ecology in general and this report in particular.

Jesse H. Ausubel

Director, Program for the Human Environment

PREFACE

Among the goals of industry must be the preservation and enhancement of the environment. Anticipating a world with more industrial activity, we must find ways to make large improvements in the totality of industrial interactions with the environment. Each corporation may see incentives to better its individual environmental performance. Consideration of the collective performance of an economy is necessarily a public function. A broad view is needed, for example, to encourage waste minimization as a property of the industrial system even when it is not completely a property of an individual process, plant, or industry. Much of the research and understanding that underlie such a system must also be of a public and open character.

The energy sector is the largest handler of materials in the economy. Current annual global emissions of carbon, our main fuel, are about 6 billion tons, or more than 1,000 kilograms per person on the planet. In comparison, the global steel industry annually produces about 700 million tons, or about 120 kilograms per person. Energy, of course, also interacts with every other industry, ranging from cars and chemicals to paper and electronics. For these and other urgent reasons, the energy sector and the US Department of Energy have thus had a long-standing and growing interest in how industry can be more safely and cleanly embedded in the environment.

The commitment of the US government to more effective, long-term approaches to environmental quality has been reiterated and elaborated in such recent reports as Technology for a Sustainable Future (National Science and Technology Council, 1994) and the 1996 report of the President’s Commission on Sustainable Development. The 1995 report on Alternative Futures for the Department of Energy National Laboratories prepared by the Advisory Board of the Secretary of Energy (Galvin Committee) pointed out that the laboratories have areas of demonstrated expertise that could provide the basis for an expanded mission in environmental research and technology development.

In the spirit of these deliberations, the Office of Energy and Environmental Systems of the Lawrence Livermore National Laboratory concluded it would be useful to learn more about the promising directions for research in the emerging field of industrial ecology. We received encouragement in this regard from our colleagues elsewhere in the Department of Energy as well as from other federal mission agencies and the White House. We hope that this report will now helpfully stimulate not only the performers and sponsors of research within the DOE, but thoughout the government and in industry and academia as well.

Phrases such as “sustainable development” will remain little more than slogans unless disciplines such as industrial ecology can provide operational concepts that improve both the economy and the environment.

Braden R. Allenby

Director, Office of Energy and Environmental Systems, Lawrence Livermore National Laboratory (1994-1996)

Vice President for Environment, Safety, and Health, AT&T

Annotated Table of Contents

I. INTRODUCTION

The Goal and the Role – Lightening environmental impact per person and per dollar of economic activity, the search for leverage

How Industrial Ecology Got Its Name – Application of ecological theory to industrial systems

II. MEANS and MEASURES

a) Candidates for Lessening Impacts

Zero Emission Systems – Leaky and looped systems, plausible future scenarios

Materials Substitution – Evolution of materials use as it effects the environment, the role of changes in material properties, time scales of change

Dematerialization – Conceptual development and testing, complementary concept of decarbonization

Functionality Economy – Frameworks and opportunities for emphasizing services over goods

b) Methods for discovering and measuring progress

Materials Flow and Balance Analysis – Materials accounting for analysis of industrial ecosystems at several levels (firm, sector, region, nation, globe), elemental studies, input-output frameworks

Life Cycles of Products – Alternative methods for Life Cycle Analysis, difficulties, needs

Indicators – Assessing environmental performance at the national, regional, sectoral, and firm levels; waste-to-product ratios, circulation measures, loss rates, intensity measures

Discovering dynamics in history – Dynamics and trajectories of materials use in the economy, long term effects of technology-environment interactions, rates and trajectories of technological evolution

International Comparisons – Practices in different countries, possibilities for transfer of concepts and strategies

III. IMPLEMENTING INDUSTRIAL ECOLOGY

a) The Material Basis

Choosing the Material – Designing materials for recycling/reuse; improving materials processing technologies; information to reduce resource use and waste generation

Designing the Product – Designing products for recycling/reuse; case studies

Recovering the Material – Separation based on physical and chemical properties; extracting metals from wastes; recovering chemicals and solvents from wastes; recycling and reusing high-volume industrial wastes

Monitoring and Sensing Technology – Tracking of materials and wastes

b) Institutional Barriers and Incentives

Market and Informational -Waste markets and exchanges, information needs, scale of agglomeration, price/cost issues

Business and Financial – Roles of private firms and corporate organization in decisions affecting environmental performance, linking IE to quality, accounting, flows of information; service and non-profit sectors

Regulatory – Effects of current regulatory structures (federal, state, local, international) on the recovery and transport of industrial wastes; reforms to favor more desirable industrial ecosystems; takeback legislation

Legal – Role of civil liability in facilitating or hampering the recovery of industrial wastes; reforms to favor innovation in industrial ecosystems, anti-trust, consumer protection, international trade, government procurement

c) Regional Strategies and Experiments – Geographic, economic, political and other factors affecting regional industrial networks; industrial symbioses (EcoParks)

IV. CONCLUSION

V. BIBLIOGRAPHY

VI. DATA SOURCES, JOURNALS, AND WEB RESOURCES

VII. BIOGRAPHICAL INFORMATION

FIGURES

1. Mass balance of an element: The case of chlorine

2. Regional materials flow: The non-ferrous metals industry in New England

3. Material flow in an industrial sector: The case of forest products

4. Evolution of end uses of cadmium

5. Wastes or ore bodies? Metallic waste streams assessed against price (Sherwood Plot)

6. Symbiosis of industrial facilities: The Kalundborg ecopark

TABLES

1. Materials inputs to the US economy, 1990

2. Mass-balance analysis, candidate elements

3. Materials flow analysis, candidate industrial sectors

4. Life cycle analysis: Comparing a 1950s and a 1990s car

I. INTRODUCTION

The Goal and the Role

If humanity grows in number and wealth yet tries to meet its desires for goods and services only in the same ways we do today, we will surely suffer from a badly polluted environment. If technology and the organization of economic activity stagnate, pollution will multiply. Fortunately, the historical record shows some hope that people can change their ways and lessen their impact on the environment while wealth increases. In fact, wealth pays for the innovations that can lessen our impact.

The role of Industrial Ecology (IE) is to learn about the levers for lightening the impact on the environment of each person and each dollar of economic activity. This report sets out how diverse engineers, scientists, and investigators and practitioners in other fields can learn where some of the levers are, how they work, and how they might be improved and used.

IE accepts as givens population and income. Industrial ecologists listen to demographers, experts in economic development, and others for definition of the dimensions of the challenge to be addressed. For example, if the US population rises from its present level of about 260 million to 400 million in the year 2100 and the economy doubles per capita roughly every 30 years, as it has since the year 1800 in the industrialized countries, the United States would have more than 12 times today’s emissions, other things being equal. To enhance environmental quality over the next century in this scenario, the annual cleaning of the US economy needs to exceed 2.5 percent. It is the job of American industrial ecologists to exceed 2.5 percent.

To do our job of minimizing waste and thus harmful exposures, various forms of environmental disturbance, and inefficiency, industrial ecologists examine such factors as choices of raw material, the intensity and efficiency of use of materials, and fates of materials. We focus on technical aspects of a particular set of links in the chain of economic activity, while recognizing the value of other social and behavioral approaches to improving the human environment as well. We believe research is a gilt-edged investment to fulfill the stated contract of industrial ecology.

A recognizable body of IE research has emerged in recent years. This includes comprehensive accounts of the flow of selected materials in the economy, descriptions of the environmental dimensions of industrial systems as distinct from their artifacts, means for analysis and design of environmentally benign systems as well as artifacts, and alternatives to disposal for various wastes.

This report categorizes some of the main directions for research for IE and specifies avenues of inquiry. To view IE, we first talk about its fundamental means, the candidate ways for lessening impacts. These include industrial systems conceived to approach zero emissions, the substitution of materials with superior environmental performance, “dematerialization” or reduced intensity of use of materials, and reconceptualization of the economy to emphasize functions, i.e., services over goods. Then we discuss the measures for discovering and quantifying progress. These include materials accounting frameworks, analyses of the life cycles of products, indicators, and historical and comparative studies to discover dynamics and tendencies. Subsequently we discuss research aimed at implementation of IE, first through the technical means to advance the material basis of the economy and then through institutional means, including informational, financial, regulatory, and legal, as well as regional strategies. Works listed in the accompanying bibliography provide background and examples for each section.

Before turning to the practical core of our report, we comment briefly on the conceptual premise of industrial ecology, which itself merits research.

How Industrial Ecology Got Its Name

The name or phrase “industrial ecology” prima facie implies that models of non-human biological systems and their interactions in nature are instructive for industrial systems that we design and operate. What makes the biological model attractive? Foremost is the cleverness with which evolution has developed things to live off the bodies and wastes of one another. Additionally, during the past few decades ecologists appear to have developed some skill at understanding systems by analyzing or depicting their flows and cycles of materials and energy.

A more problematic question is efficiency. Ecosystems are not necessarily exemplars of efficiency. Even the most efficient ecosystem, say, a corn field, captures only about 5 percent of solar energy as the product of photosynthate. In the summertime, most of the energy overheats the plant or evaporates water that the plant needs to keep turgid. In a mature, stagnating forest (likely to please the eyes of a naturalist), decay returns the CO2 in the photosynthate to the air, making the efficiency zero.

The proposition that industrial systems may be beneficially viewed as ecosystems merits critical probing. An early step is simply to articulate a vocabulary matching or accommodating different morphologies. Research should also explore the applicability to industry of ecology’s concepts (adaptive pathways, food webs, limiting factors, energy and material budgets) and rules (e.g., Cope’s rule that increase in body size confers adaptive advantages, the least work principle). Also valuable might be an exploration of the properties that favor ecosystem resilience, and what these suggest for the design of industrial networks. For an introduction to the ecological analogy, see Graedel, T.E., 1996, On the Concept of Industrial Ecology, Annual Review of Energy and Environment, Volume 21; Allenby, B.R. and Cooper, W.E., 1994, Understanding Industrial Ecology from a Biological Systems Perspective, Total Quality Environmental Management, Spring 1994 pp. 343-354.

Over the long run, industrial ecology is a good name for the discipline we have in mind only if there is merit to, and insight from, the analogy, not because it connotes an environmentally friendly industry.

II. MEANS AND MEASURES

Candidates for Lessening Impacts

Zero Emission Systems

An overarching goal of IE is the establishment of an industrial system that cycles virtually all of the materials it uses and releases a minimal amount of waste to the environment. Theoretically, the developmental path to such an end state follows an orderly progression from what Allenby and Graedel call Type I, II, and III systems. Type I systems require a high throughput of energy and materials to function and exhibit little or no resource recovery. Type II systems represent a transitional stage where resource recovery becomes more integral to the workings of the system but do not satisfy its requirements for resources. The final stage, the Type III system, cycles all of the material outputs of production, though still relying on external energy inputs.

Research is needed to elaborate this vision of future industrial ecosystems that are looped rather than leaky and to develop dynamic scenarios of how to achieve it technologically, at various levels of economic activity and population. Achieving it means that part of IE is a systematic search for leverage.

The research must especially consider basic industries (such as those providing energy, food, shelter, transport, as well as services) that currently rely on the vast mobilization of material resources. Fundamentally, this effort involves the search for alternatives to present systems that incorporate technologies that limit initial resource requirements and generate and recover usable waste products. The most developed thinking about zero emissions has occurred in the context of energy systems, particularly in relation to the use of hydrogen as an energy carrier. Recent attention has focused on electric cars as zero-emission vehicles and the larger question of the energy and material system in which the vehicles are embedded. Classic studies about hydrogen energy might be revisited and extended in the context of industrial ecology (Gregory, D.P., 1973, A hydrogen-energy system, L21173, American Gas Association, Washington DC). See Hafele, W., Barnert H., Messner, S., Strubegger, M., and Anderer, J., 1986, Novel Integrated Energy Systems: The case of zero emissions, pp. 171-193 in Clark, W.C. and Munns, R.E., eds., Sustainable Development of the Biosphere, Cambridge University Press, Cambridge, U.K.

Material Substitution

The goal of minimizing waste may be reached by the leap of using a wholly new material for a purpose rather than refining the processing of an old material. The new material should perform the function longer, be processed less wastefully, or be acquired with less waste. Widespread examples of materials substitution include metals for wood, aluminum for steel, and high carbon steel for other steels, and, more specifically, steel for rayon in tires and plastics for glass in beverage containers. Historically, many of the substitutions have been alloyed blessings, bringing new environmental problems as well as reducing old ones.

Research is needed to understand the evolving consumption levels and applications of the materials used to provide various economic functions, the physical and chemical properties (e.g., strength-to-weight ratio, corrosibility, toughness, thermal stability) that motivate the selection of one material over another, and the time scales necessary for the substitution of materials by superior competitors. The purpose of the research would be to identify the materials for which we should most actively seek substitutes, the most promising alternatives, and the feasible time scales to effect substitution.

Dematerialization

Materials substitution is considered a principal factor in the theory of dematerialization. The theory asserts that as a nation becomes more affluent the mass of materials required to satisfy new or growing economic functions diminishes over time. The complementary concept of decarbonization, or the diminishing mass of carbon released per unit of energy production over time, is both more readily examined and has been amply demonstrated by researchers over the past two decades. For materials in general, several forms of innovation (more efficient recovery of minerals and metals from crude ores, imbuing materials with improved properties per unit mass; and better societal mechanisms for handling and reusing wastes) drive this purported phenomenon. Dematerialization is advantageous only if using less stuff accompanies or at least leaves unchanged lifetime, waste in processing, and waste in acquistion.

Despite the collection of multiple anecdotes to support the dematerialization hypothesis few studies have offered a systematic approach for testing it. Research is needed to both advance the theoretical framework for dematerialization and for identifying the means to validate it. For a presentation of the dematerialization hypothesis see Bernardini, O., and Galli, R., Dematerialization: Long Term Trends in the Intensity of Use of Materials and Energy, Futures, May 1993, pp. 431-48 (1993); See also Wernick, I.K., Herman, R., Govind, S., Ausubel, J.H., Materialization and Dematerialization: Measures and Trends, Daedalus 125(3):171-198.

Functionality Economy

An interoffice envelope can carry a new address and a new message, but carries many messages before the space for addresses is filled. One cathode ray tube or flat screen display can convey countless messages. From the viewpoint of IE, products represent a means for serving a particular function to the consumer. A shift in the prevalent attitude of managers, engineers, and public officials from viewing products as endpoints in themselves to seeing them as providing functions to end users could translate to wholesale reductions in national resource use and diminished waste streams.

For example, in this view one does not purchase an automobile but rather the function of transporting passengers and goods. As a result the manufacturer does not relinquish prime ownership of the vehicle at any time and must reassume possession at the end of the vehicle’s useful life. This arrangement provides strong incentive to design the vehicle for extended useful life and maximum recoverable value after use. The proliferation of cheap telephones with short service lives provides a counter example where the end of a decades-long leasing arrangement for telephones has led to a new source of municipal solid waste and significantly increased the number of devices manufactured.

Due to the incentive to extend product life the planned obsolescence of products could itself become obsolete as the acquisition of a physical object would be subordinate to the purchase of the function it provides. Research is needed to examine the most promising industries in the economy where this view may yield fruitful results. Further research is then needed to design the economic, regulatory, and legal systems necessary to introduce such `function as product’ arrangements in the broader marketplace. The functionality economy substantially redefines industrial activity, with particularly profound implications for manufacturing concerns. For an introduction to this topic see Stahel W. R., The Utilization-Focused Service Economy: Efficiency and Product-Life Extension, pp. 178-190 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds, 1994.

Methods for Discovering and Measuring Progress

Three analytical methods for finding leverage suggest themselves. The first maps the flow of a material such as lead through the nation’s industry, a sector, and even an individual firm. This mapping resembles the analysis of the dollars or energy in an economy. The second follows a product through its life from assembly to junk yard (and beyond) and encompasses all the material in it. The third examines the course of, say, iron per dollar of GDP, to learn whether a society is approaching or retreating from IE’s goal of lightening the environmental impact per person and per dollar.

Materials Flow and Balance Analysis

Understanding the structure and environmental effects of industrial systems requires a knowledge of their anatomy and physiology. Materials flow studies reveal structure, and webs of economic and material relationships among actors, in the industrial system as they map the flow of natural resources into processing and manufacturing industries and the fate of products and wastes exiting them. The object for study can be the mass of individual chemical elements, compounds, or entire classes of materials. The framework for such studies include individual facilities, whole industrial sectors, and geographic regions.

Currently much of the challenge in constructing materials flow accounts at all levels lies in the absence of organized data sets. In many cases the data are collected but effort is necessary to compile data from many sources into a useful form. In other cases the data simply do not exist.

Much effort has been made to detail the mass flows of carbon, nitrogen, sulfur, and phosphorus. Their role in the biogeochemical functioning of the planet attaches importance to changes in their concentration in environmental media and their biological availability. In addition to the enormous volume of these elements cycling in the biosphere, their environmental significance depends strongly on their chemical form. Despite decades of effort researchers have yet to arrive at a full understanding of the natural sources and sinks of these elements and the precise impact of anthropogenic perturbations to the cycle. Still, IE can learn from our understanding of the global sources and sinks, including anthropogenic ones, for these elements, and their transport through environmental media, and seek to contribute practical opportunities for reducing human perturbations to the global system. For example, attractive ideas need to be developed for the industrial recapture of carbon dioxide.

For less ubiquitous elements that carry with them a clearly harmful environmental impact, however, the task of circumscribing the amounts mobilized by natural and human activity and examining their metabolism in the industrial system is more feasible. Mass balance studies must consider the manifold chemical transformations that elements, such as chlorine (1991 US production 10.4 Million Metric Tons (MMT)), undergo in industry. Figure 1 shows a first-order analysis of the industrial metabolism of elemental chlorine in Western Europe in 1992. The complex structure of use of this element in industry highlights the different possible levels of details for mass balance studies.

If the goal is to minimize toxic waste, not just waste, surely the form of the waste ranks with all the other concepts. For example, if we are making poisonous phosgene (COCl2), it matters much whether we emit phosgene or CO2 and NaCl. De-toxifying waste is a pre-eminent engineering task.

Mass flows for elements consumed in far smaller quantities than chlorine, such as cadmium (1993 US consumption 3.1 kMT), can be described more fully due to their smaller volume and relatively limited number of industrial applications. Mass flow analyses for arsenic, cadmium, chromium, cobalt, manganese, mercury, salt, tungsten, vanadium, and zinc are available from the Office of Minerals Information at the US Geological Survey (formerly the Branch of Materials, Division of Mineral Commodities at the US Bureau of Mines) located in Reston, Virginia. These analyses vary in their level of detail and in their environmental, as opposed to economic, relevance. At a minimum however, the studies contain valuable data and provide an excellent base for future studies.

Scanning the periodic table of elements brings into focus the most promising candidates for the development of detailed mass-balance accounts. Toxic elements such as those identified on the Agency for Toxic Substances and Disease Registry (ATSDR) as priority substances for toxic profiles provide some initial guidance in selecting elements for mass-balance accounts. (An element’s LD50, the dosage that will, on average, kill 50% of a group of experimental animalsprovides another possible method for ranking elements by toxicity and is regularly used as a basic toxicity indicator for hazardous chemicals.) Toxic elements enter the environment through industrial activities that deliberately use them for their unique properties and from the processing and thermal treatment of ore and mineral bodies where they occur as trace elements. These are of course prime candidates for an engineer to find substitutions. Other elements and basic minerals to be included on the priority list are those involving large materials and waste flows even if they themselves do not present any acute toxic threat. Table 1 lists some representative metallic elements for which mass balance accounts are most needed along with some of the criteria for their determination.

Consideration of these elements begins with the amount the nations consumes, goes on to how much escapes from processing, and ends with whether the escape matters, the toxicity of the element.

Table 1.

Element
1994 US Consumption(1,000 metric tons)
1992 Toxics Release Inventory (TRI) Production-related Waste (1,000 metric tons)*
ATSDR Priority group listing
Lead
1500
620.752
1
Nickel
131
68.792
1
Arsenic
19.4
6.209
1
Beryllium
0.2
0.0063
1
Cadmium
2.0
7.069
1
Chromium
387
125.184
1
Mercury
0.6
0.927
2
Zinc
1350
260.346
2
Selenium
0.5
0.364
2
Silver
4
2.733
3
Copper
2800
534.298
3
Thallium
0.8
0.038
4

*Wastes values for elements and their compounds For relatively well understood systems, such as single industrial facilities, mass-balance studies rely on the simple, though underutilized, law of conservation of mass. By using available data establishing the mass of either inputs or outputs, the conservation law along with other process information (e.g., chemical reaction rates) allows researchers to construct the other side of the equation. For energy consumption, knowledge of the energy diet of the system under question allows researchers to gauge the amount of energy used for plant operation, embedded in manufactured products, and dissipated as heat.

Another vantage point for assessing materials flows is via industrial sectors. Figure 2 shows a `spaghetti diagram’ indicating both the magnitude and direction of the metals flows for a portion of the non-ferrous metals sector in New England. The data used for the figure are drawn from direct interviews and site visits, official state and federal reports, and telephone questionnaires. Notwithstanding the extensive time and human effort expended, the study was limited both geographically and in the number of facilities examined, demonstrating the difficulty involved in obtaining reliable and accurate waste data. The study also underscores the fact that, when viewed in absolute terms, even small loss rates (around 1% for copper and 5% for lead) translate to significant environmental releases and suggest the need for even more scrutiny when examining larger scale flows where small differences in calculated efficiency can hide or reveal substantial volumes of waste. See Frosch, R.A., Clark, W.C., Crawford, J., Sagar, A., Tschang, T.T. and Weber, A., 1996, The Industrial Ecology of Metals: A reconnaissance, available from the John F. Kennedy School of Government, Harvard University, Cambridge, MA.

For more comprehensive, if less detailed, studies of entire sectors, IE can draw on an analytic base established by United States government departments and agencies. The US Department of Energy’s “Industries of the Future” program focuses on the fundamental materials processing industries of petroleum refining, chemicals, pulp and paper, aluminum and glass, and steel. In addition to being industries with large resource requirements and waste outputs, these industries are considered basic to future national economic health and competitiveness. The US Environmental Protection Agency’s (USEPA) “Common Sense” program looks at automobile manufacturing, computers and electronics, iron and steel, petroleum refining, and the printing industries. In addition to environmental concerns, economics and politics figure prominently in driving the selection of industries for these government programs. Table 2 lists a preliminary selection of industrial sectors (arranged by SIC code), as well as some criteria for determining their priority for IE research.

Consideration of these sectors begins with the amount the nations consumes, goes on to how much escapes from processing, and ends with whether the escape matters, the toxicity of the element.

Table 2.

Sector
Two DigitStandard IndustrialClassification (SIC) Code
1990 Domestic Production est.(10MT)
1985* Non-Hazardous Waste Generation(10MT)
1992** TRI Production-related Waste(106 MT)
Chemicals
28
300
1264
9.0
Petroleum
29
360
153
1.3
Primary Metals
33
112
1241
1.8
Electric\Electronic
36


0.4
Pulp & Paper
26
77
2043
1.1
Fabricated Metals
34


0.4

* Waste quantities include water fraction which can exceed 90%.

** Accounts for 84% of total TRI Production-related waste in 1992

The chemical sector stands out in accounting for about the half of the hazardous waste generated in the United States. The performance of detailed mass balance studies for this industrial sector is complicated by the variety of resources used as input materials, the use of intermediate chemicals in production, and the production of outputs that fall under several different SIC codes (e.g., chemicals 28 and petroleum 29) . As a result, environmental analyses of the chemical sector often rely on highly aggregated data and emphasize innovations in processing and other changes in practice that can improve environmental performance. Independent studies have amply shown the gains achievable through better plant maintenance and material substitution among other innovations. For a review of opportunities to improve environmental performance in the chemical industry see D. Allen, The Chemical Industry: Process Changes and the Search for Cleaner Technologies, pp. 233-273 in Reducing Toxics, R. Gottlieb, Ed., Island Press, 1995. For case studies on chemical plants that have reduce waste generation through a series of innovations in practice, materials selection, process modifications, etc. see INFORM, Cutting Chemical Wastes, INFORM, New York, 1985, and INFORM, Environmental Dividends: Cutting More Chemical Wastes, INFORM, New York, 1992.

In contrast to the chemical sector, the forest products sector relies on a highly uniform feed material (i.e., wood) and produces a relatively well defined class of output products. Figure 3 shows a mass flow diagram for the forest product industry for 1993. The flow chart includes both the use of virgin feedstocks as well as streams of residues and recycled materials used in production. For a review of resource efficiency in the forest products sector see Ince, P.J., Recycling of Wood and paper Products in the United States, U.S. Dept. of Agriculture Forest Service, 1994. Such analyses can reveal where leverage lies to reduce draw on the forest, municipal waste, or other environmental concerns. See for example, Wernick, I.K., Waggoner, P.E., and Ausubel, J.H., Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the U.S., Journal of Industrial Ecology 1(3), in press, 1997.

Service sectors account for roughly three quarters of the annual Gross Domestic Product in the US. Though their environmental impact is not commensurate with this economic clout many of the activities associated with the service sector contribute significantly to environmental fallout. Studies of sectors such as health care, wholesale and retail trade, and communications focus on environmentally-important activities that support the provision of services and distribution of goods but are often hidden from the public eye. Studies in this area should assess issues like the transportation networks and energy needs associated with various service industries as well as direct material requirements for equipment ranging from the medical instruments to office paper and their disposal. Service industries can play a strategic environmental role in influencing their materials suppliers to act in an environmentally responsible manner as well as induce consumers to make environmentally responsible choices. Furthermore, a half hour along an interstate reading the signs on the trucks from Ben and Jerry’s to Sears and air conditioning services shows how services dominate the distribution channels. For an example of environmentally oriented management in service industries see Bravo, C.E., 1995, A View of the United States Postal Service as a Service Sector Corporation, presented at the Fourth Annual NAE Workshop on Industrial Ecology, July 5-7, Woods, Hole, MA. Also see Guile, B.R. and Cohon, J.L., 1996, Services and the Environment: More questions than answers, Available from the National Academy of Engineering, Washington, D.C.

Unlike mining and manufacturing industries with visible, and sometimes massive, flows of materials no obvious strategy exists for examining sectors that provide medical services or deliver and sell goods. Research is needed to further develop a conceptual basis for addressing and evaluating the environmental impact of various service industries and to perform sector studies to test their hypotheses. For a rudimentary framework for assessing the environmental impact associated with the provision of services see Schmidt-Bleek, F., 1993, MIPS – A universal ecological measure?, Fresenius Environmental Bulletin 2:306-311.

Materials and energy flows correspond to some degree to money flows. Constructing materials accounts on the model of existing monetary input-output accounts of the economy encourages awareness, and clarifies understanding, of the use of physical resources in the economy, the addition of value to raw materials, and the amounts of waste generated in US industry. Input-output studies attempt to relate the effect of economic growth and technological innovation with the material input and output of economic sectors. One recent study examines the projected use and disposal of plastics in the US by linking a database describing plastics use per unit of sectoral output to an input-output database of the US economy. Expanding this framework to general material use will require researchers to estimate coefficients relating the consumption of specific materials to output across all economic sectors. Using a full set of coefficients, researchers could better estimate the cascade effects of activities, such as materials substitution and the diminished use of a given resource on other sectors and the resulting environmental impact. For an example of an input-output analysis of plastics in the US under different scenarios for consumer recycling see Duchin, F. and Lange, G., 1995, Prospects for the Recycling of Plastics in the United States, Structural Change and Economic Dynamics, July 1995.

Geography-based mass balance studies can encompass localities, regions, and the nation as a whole. Though such studies blur local detail by relying on aggregated data, they can provide usefully comprehensive accounts of resource use and, depending on their scale, better locate the sources and sinks of major materials flows. At the national level, mass-balance studies allow resource managers to gauge the impact of federal policies on national resource use, determine per capita values for resource use, and plan strategically for the future. Research in this area should help clarify the difficulties in obtaining the necessary data for place-based mass-balance studies, including the need for better information on materials origin, identify data gaps, generate taxonomies for classifying resources, and specify the appropriate level of detail for materials accounts. As an example of a national materials account, Table 3 shows an account of materials inputs into the US economy in 1990. Such analyses should, again, help show where to seek leverage for environmental improvement.

Table 3.

MATERIAL GROUP
APPARENTCONSUMPTION (MMT)

TOTAL US (MMT)
PER CAPITA PER DAY (kgs)

Coal
843


Energy
Crude Oil
667



Natural Gas
378



(Petroleum Products)
62
1950
21

Crushed Stone
1092


Construction Minerals
Sand & Gravel
828



Dimension Stone
1
1921
21

Salt
41



Phosphate Rock
40



Clays
39


Industrial Minerals
Industrial Sand & Gravel
25



Gypsum
23



Nitrogen Compounds
17



Lime
16



Sulfur
13



Cement (imported)Other
1224
223
4

Iron & Steel
100


Metals
Aluminum
5



Copper
2



Other
4
111
1

Saw Timber
123


Forestry Products
Pulpwood
73



FuelwoodOther
5213
260
3

Grains
220



Hay
133



Fruits & Vegetables
71


Agriculture
Milk & Milkfat
64



Sugar Crops
51



OilseedsMeat & Poultry
4542



Other
5
631
7

Life Cycles of Products

From the mapping of material, we turn to analyzing a product throughout its life to learn its environmental impact. Used with rising frequency in this decade to study consumer products,

Life Cycle Analysis (LCA) has been defined by the USEPA as a way to “evaluate the environmental effects associated with any given industrial activity from the initial gathering of raw materials from the earth until the point at which all residuals are returned to the earth.” Several organizations have developed methods for LCA each using a different analytic approach to this complex activity. Regardless of the approach, several generic difficulties challenge LCA, including poor quality data, weak reasons or procedures for establishing analytic boundaries, and diverse values inherent in comparing environmental factors with no common objective, quantitative basis. The selection of products undergoing LCA to date has been haphazard, with several products receiving intense scrutiny while others are neglected almost completely. Consistent with the goal of establishing rigorous parameters for measuring the environmental impact of industrial activity, IE research properly focuses on each of these concerns about LCA.

Comparing existing methods for LCA gives insight into the conceptual framework used by researchers. The Society for Environmental Toxicology and Chemistry (SETAC) `Code of Practice’ for LCA stands out currently as the most widely recognized procedural model. The Code divides LCA into four distinct components: 1) Scoping; 2) Compiling quantitative data on direct and indirect materials/energy inputs and waste emissions; 3) Impact assessment; and 4) Improvement assessment. While variations exist, the theme of taking an inventory and performing an assessment based on collected data is common to all LCA approaches dating back to the early 1970’s.

Different methods for obtaining and presenting LCA results have evolved in response to the uncertainty associated with input data and the difficulty of reducing disparate indicators to a few meaningful numbers useful to managers and product designers. Methods for LCA differ in how they accommodate the need for qualitative analysis. LCAs variously denominate the value of environmental impact in kgs, dollars, square meters, and other numerical values. Continued research will shed light on what are the most effective methods for LCA and when can they be used in conjunction to reflect the multiple axes of environmental quality.

Though some methods for LCA receive approval for thoroughness and analytic consistency, these same methods have been criticized as requiring too much data, time, and money when each are in short supply. As an alternative method for assessing the environmental impact of products, researchers at AT&T have devised the Abridged Life Cycle Assessment Matrix, a method that couples quantitative environmental data with qualitative expert opinion into an analysis that conveys the uncertainty and multidimensionality of LCA and also yields a quantitative result. Table 4 shows an example of this LCA method in a comparison of the generic automobile of the 1950s and the 1990s. See Graedel, T.E., Allenby, B.R., and Comrie, P.R., 1995, Matrix Approaches to Abridged Life Cycle Assessment, Environmental Science and Technology, 29:134A-139A.

Table 4.

Life cycle analysis: Comparing a 1950s and 1990s car

Generic 1950s automobile

Life Cycle Stage
Environmental Concern

Materials choice
Energyuse
Solid residues
Liquid residues
Gaseous residues
Total
Premanufacture
2
2
3
3
2
12/20
Product manufacture
0
1
2
2
1
6/20
Product packaging and transport
3
2
3
4
2
14/20
Product use
1
0
1
1
0
3/20
Refurbishment-recycling-disposal
3
2
2
3
1
11/20
Total
9/20
7/20
11/20
13/20
6/20
46/100

Generic 1990s automobile

Life Cycle Stage
Environmental Concern

Materials choice
Energyuse
Solid residues
Liquid residues
Gaseous residues
Total
Premanufacture
3
3
3
3
3
15/20
Product manufacture
3
2
3
3
3
14/20
Product packaging and transport
3
3
3
4
3
16/20
Product use
1
2
2
3
2
10/20
Refurbishment-recycling-disposal
3
2
3
3
2
13/20
Total
13/20
12/20
14/20
16/20
13/20
68/100

Table 4. The two panels show environmental performance values for 1950s and 1990s generic American automobiles. This LCA method allows for broad comparison environmental performance at major stages of the product life cycle (e.g., product manufacture and product use) between two historical periods. Note, for example, the improved performance in product manufacture between the two periods, and also note the relatively low score for product use still assessed in the 1990s. The best possible value for each cell is 4 and a maximum score is 100. Source: Graedel, T.E., Allenby, B.R., and Comrie, P.R., 1995, Matrix Approaches to Abridged Life Cycle Assessment, Environmental Science and Technology, 29:134A-139A.

Research is needed to compare existing methods for LCA with an eye on their treatment of uncertain data, the weight given to various environmental parameters, and the format for presenting results. The aim of such research is the development of standardized methods for LCA that convey the data uncertainty and reflect the multidimensional character of environmental impacts caused by products. For a critical review of current methods for LCA see R.U. Ayres, 1995, Life Cycle Analysis: A Critique, Resources Conservation and Recycling, 14: 199-223. In the search for leverage, the question remains which products deserve an LCA and which do not.

Indicators

When we cannot measure a material within an industry or the components and fate of a product, our environmental knowledge is of a meager and unsatisfactory kind. The measurements must serve their purpose of navigation toward the goal of IE, revealing whether a great environmental impact is growing or shrinking in the long term, whether a policy is succeeding or failing, and differentiate the trivial from the deadly.

In our vocabulary, measures or metrics show the tons needed to perform a materials- balance or life cycle analysis. Indicators combine measurements into an index of progress or regress broadly for an industry, firm, or policy. Like the Cost of Living Index or the Index of Leading Indicators, a suite of indicators tell a more reliable story than a single measure.

In line with the objectives of IE, metrics should measure the efficiency with which resources and energy are converted to useful products and byproducts in industry with metrics such as product-to-waste ratios, and circulation and loss rates. These environmental metrics extend to all scales in the industrial system. At the global, national, and regional level the need is for metrics that integrate within and across industrial sectors, recognize the interdependence among them, and determine their combined effect on the population and environmental quality. For industrial sectors, research is needed to devise metrics that measure the average efficiency of materials use, identify the gap between leaders and followers in environmental performance, and examine the relative value of mandated as opposed to voluntary adoption of best environmental practices.

Metrics can isolate salient environmental variables that allow for more informed investigation of opportunities for synergism in the industrial system through the exchange of residual materials and energy. For firms, metrics should aim to provide measures of internal resource use and waste generation and the impact of products when they are consumed and disposed of. The challenge at this level is to devise meaningful environmental metrics that fit with existing benchmarks used to assess business operations, such as productivity, inventory accounting, and overhead costs. Several large US and European firms (e.g., 3M, AT&T, Novo Nordisk, Volvo) have incorporated environmental metrics into their business operations and have taken lead international positions in promoting improved environmental performance.

To show general progress in reducing environmental impacts the indicators must consistently link or relate the performance of a firm to that of an industry, or a region and nation. It must link an LCA to an analysis of material in a nation. The purpose of linkages is to avoid optimizing a single factory or sector at the expense of hurting the larger system’s environmental performance. The same is true of geography-based metrics: community level assessments should be coordinated with state-wide initiatives and contribute to achieving national goals for environmental quality. In developing a strategic environmental vision, the global optimization of the system should not be compromised by pursuing what are in fact only local maxima. Selecting the right scale for metrics is critical to ensuring that the system of interest is not arbitrarily defined and does not exclude relevant activities nor include too much that is irrelevant.

Finally, metrics should be devised such that do assume or promote lock-in to current technologies that are inherently problematic while ignoring promising innovations that are fundamentally more environmentally sound. For instance, optimizing the environmental attributes of the personal automobile based on a gasoline powered internal combustion engine should not hinder the development of inherently cleaner, though not yet commercial, alternatives. The metrics should promote the understanding of industrial evolution and its possibilities.

Discovering Dynamics in History

Research on the historical development of technological innovation and diffusion into society provides useful models for looking to the future and puts present performance in context. Historical rates yield the record of outcomes of technical and behavioral change, of political and economics forces all interacting. Patterns may also repeat from one nation to another. If historic rates for master processes such as decarbonization and dematerialization appear too slow to avert future problems, we might learn whether needed acceleration is within achieved experience or extraordinary. Most attempts to discover dynamics in history have been for the US and a few other industrialized countries for which good data are readily accessed. More effort needs to be applied to the records of China, India, and other countries, data permitting. For discussion of rates of diffusion in space and time, see Gruebler, A., Time for a Change: On the Patterns of Diffusion of Innovation, Daedalus 125(3): 19-42.

International Comparisons

As history can teach about the potential for change and its likely directions, so can international comparisons of practice in such fields as waste generation. Ongoing, comparative review of emerging strategies and frameworks for implementing IE in diverse countries would help shed light on efforts of each country. International comparisons yield insights into the roles, relative significance, and malleability of industrial structure, social organization, and culture as well as technology. For a decade-old comparison of environmental regimes in various countries which thus allows insight into both durable and transient national features, see Hoberg, G. Jr., 1986, Technology, Political Structure, and Social Regulation: A cross-national analysis, Comparative Politics, 18:357-376. For more information on IE activities in Japan see Industrial Ecology: US/Japan Perspectives, National Academy of Engineering, National Academy Press, 1994.

III. IMPLEMENTING INDUSTRIAL ECOLOGY

With means and measures for progress in IE, we turn to implementation. We group research on implementation into technical matters of the material basis and into institutional barriers and incentives.

a) The Technical Basis

Choosing the Material

IE research in the area of basic materials focuses on ways to increase the potential for reusing, recovering, and recycling materials used and generated by industry (including products, byproducts, and wastes) from the primary processing of materials and from actual industrial and consumer products leaving factories.

For instance, research on “smart materials” capable of sensing and responding to ambient changes in surrounding media as well as internal structural change offers the promise of reducing the mass necessary for different economic functions and saving the resources needed to replace failed structures through early detection and prevention. Research on surface and interfacial properties of materials could allow for more durable products that better resist corrosion and wear. Improving the strength-to-weight ratio and the thermal performance of materials can facilitate the development of transportation vehicles that require less mass to maintain structural integrity and allow engines to achieve greater thermodynamic efficiencies.

Anticipating the recycling that we shall discuss later, we note that choosing the right material can ease or retard recycling. Optimizing the performance features of materials often comes at the expense of increasing their complexity in products and heightening their sensitivity to contaminants, for example, the low tolerance for contaminants in high performance metals with strict alloying ratios. This complexity complicates later efforts at reprocessing. In cases where complex materials are recovered, their presence in a mixture with other less or differently refined materials translates to downgrading the recovered materials to lower performance standards and thus forfeiting much of their initial value. Research on improving materials composition in products to better accommodate materials cycling as well as research on materials selection and process design must remain aware of the current technical and economic drivers in the materials industries (e.g., high throughput, materials efficiency, and increased value added) in pursuing technological innovation in this environmentally strategic industry.

Research on alternative methods for materials processing to reduce toxicity must consider both the selection of feed materials as well as the processes involved in all stages of production. In many cases more environmentally benign starting materials exist but can not be used with existing capital equipment. IE research on materials processes thus focuses on opportunities for modifying processes to accommodate different starter materials, minimizing toxics generation, and optimizing the character of products and byproducts for reuse.

Research on these topics is well established, but the salutary environmental dimension remains to be much more fully explored. Research on the end-of-life stage of materials and products needs to be increased. For a review of materials research needs for IE see Basic Research Needs for Environmentally Responsive Technologies of the Future, P. Eisenberger, Ed., Princeton Materials Institute, Princeton, NJ, 1996.

Designing the Product

Research to improve the environmental character of consumer products (i.e., Design for Environment) complements research on the component materials that comprise them. Here too the purpose of research is to help achieve the objective of a closed materials cycle. Research on product design should aim to minimize the waste generated during product manufacture, simplify the reuse of products and their components, and minimize energy consumption use and other negative impacts of product use. In general, product designers have greater flexibility in selecting the materials components of products, including the use of reprocessed materials, than is the case for primary materials processors. The evolution of the uses of cadmium illustrates how a hazardous material can be incorporated either in dangerously dissipative products such as paint or in much easier to contain and recycle products such as batteries (Figure 4).

The stage of product assembly also offers opportunity for reducing the use of toxic materials and minimizing wastes. Designing products to ease disassembly is of considerable practical importance to enable recovery. The less labor and capital equipment necessary for disassembly, the more economically attractive recovery becomes. Clever design can also reduce the amount of materials needed in a product, for instance, the use of lower gauge metal sheet in aluminum beverage cans. Research in each of these areas of product design can be complemented by Life Cycle Analysis to understand the tradeoffs that occur in optimizing one stage of the manufacturing process in isolation from others. For a review of strategies and design options for improving the environmental character of products see US Congress Office of Technology Assessment, Green Products by Design: Choices for a Cleaner Environment, OTA-E-541, Washington, DC, US Government Printing Office, 1992.

Manufactured “Products” in the marketplace include items made of distinct material components assembled into more complex forms as well as intricate blends of materials such as chemicals. They range in size from jumbo jets to children toys and from gasoline to shampoo. Selecting representative products for case studies provides concrete examples that illustrate the leverage of product design on the subsequent environmental attributes of products and the processes used to make them. The selection of products that reflect the wide variety of industrial and consumer products in the marketplace and the performance of detailed case studies looking at the possible design choices and their effects constitutes a further area of IE research. For a case study on the environmental design of the telephone see Sekutowski, J.C. 1994. Greening the Telephone: A Case Study. pp. 178-185 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds., National Academy Press, Washington, D.C. For a case study on the environmental design of household refrigerators see Naser, S.F., Keoleian, G.A., and Thompson, L.T., 1993, Design of a CFC-Free, Energy Efficient Refrigerator, Chemical Engineering Dept., University of Michigan, Ann Arbor. Available from the National Pollution Prevention Center, Ann Arbor, MI.

Recovering the Material

The minimizing of waste and so environmental impact by choosing the right materials and assembling them right continues with the reuse of materials. For mixtures of material the challenge for recovery lies in separation. Using humans to separate materials is both costly and inefficient. Furthermore, in some cases two materials (e.g., different plastic resins) may appear similar to the naked eye but may differ significantly in their chemical and physical properties. Automated methods for materials separation are capable of detecting such differences by exploiting disparities in physical and chemical properties to distinguish between materials. Taking advantage of differences in particle size, density, and magnetic and optical properties of materials in municipal solid waste allows secondary materials processors to separate out organics, and ferrous and non-ferrous metals from waste streams. Sensor arrays and high speed computing capability now allow for real time identification and separation of different plastic resins in mixed waste streams.

For materials more intricately bound in waste streams, more sophisticated approaches are needed. Metals can be found in rinse waters from metal finishers, stack emissions and pollution control sludge from coal-fired power plants, and baghouse dusts from metal smelters among others. A range of technical approaches exist for recovering metals from wastes including electrolytic techniques (common in hydrometallurgical processes used for primary materials), acidic leaching (familiar to mining engineers) as well as a variety of membrane technologies. For a review of state of the art in the recovery of metals from complex solutions see Hager, J.P., et al., eds., 1994, Extraction and Processing for the Treatment and Minimization of Wastes, published by The Minerals, Metals, and Materials Society, Warrendale, PA.

Many tons of metals are annually lost to productive use as a result of their dilution or minute concentrations in wastes. In a national analysis of metals concentrations in waste streams in the US, researchers have found that metals concentrations are frequently higher in waste stream compared with those in typical ore bodies. This analysis was conducted using the “Sherwood Plot,” which relates the selling price of a material with its degree of dilution in the matrix from which it is being separated. Figure 5 shows the “Sherwood Plot” for resource concentrations in their natural matrix and those found in US waste streams. Based on this analysis large amounts of valuable resources are annually discarded as a result of their being viewed as “wastes” (a phenomenon that reflects the regulatory, as opposed to technical, origin of this term). The analysis also demonstrates that in this instance enhanced materials recovery would not only provide environmental benefits but economic ones as well.

For each of the above areas, IE research can freshly synthesize knowledge on materials separation and recovery in an environmental framework. The research should include the identification of needs for improving existing recovery systems based on their demonstrated ability to isolate distinct materials as well as the need for new separation and recovery technologies. More advanced research in this area could explore opportunities for recovering materials that are currently dissipated (i.e., lost) through normal use, in cases where this is feasible. Lots of caustics and solvents go down our drains.

The massive quantities of several relatively safe, non-toxic wastes surely provide opportunities for recovery. These materials are often byproducts from large-scale industrial activity and, though mostly benign, may contain small amounts of trace contaminants. The largest of these waste streams are coal combustion byproducts (CCB) (i.e., fly and bottom ash, slag, and desulfurization sludge), averaging about 100 MMT annually in the US. Currently some fraction of this material is used in road aggregate and cement manufacture, however the majority of CCB continues to accumulate in waste piles. For an analysis of the uses CCB and other bulk wastes see Ahmed, I., Use of Waste Materials in Highway Construction, Noyes Data Corporation, Park Ridge, New Jersey, 1993. Also see Barsotti, A.F., and Kalyoncu, R., Implications of Flue Gas Desulfurization on the Mineral Industries, US Bureau of Mines (RIP), Washington, D.C., 1995.

Phosphogypsum provides an example of a bulk material where the presence of contaminants confounds efforts at recovery. Roughly 50 MMT of phosphogypsum are generated annually as a byproduct from the production of phosphoric acid, mostly used for producing fertilizer and animal feed, in the US. The use of phosphogypsum for road construction and as a cement additive is constrained by the presence of radionuclides (e.g., uranium-230 & 234, radium-226, and radon-222) and, in some cases, heavy metals (e.g., arsenic, chromium). Development continues on means for purifying this waste material for productive use. Other examples of large scale potentially reusable industrial waste flows include spent potliners from metals smelters and refractory materials used in glass manufacture.

Substituting these bulk materials in the economy directly displaces masses of virgin materials and thus avoids environmental disruption from mining and quarrying. The factors limiting fuller integration of these waste resources include the presence of contaminants and the costs associated with their transport. IE research on bulk industrial wastes should aim to neutralize the problems preventing greater recovery of these materials. Specifically, IE research should identify major sources and potential uses for bulk industrial wastes, clarify the type and level of contaminants found in them, point to the technologies involved in rendering wastes suitable for reuse, and analyze the further possibilities for their greater use in the economy.

Monitoring and Sensing Technology

Accurate empirical data on waste streams and other operational variables are a prerequisite for designing and using environmental performance measures in industry and for implementing new processes and practices. Additionally, environmental monitoring of natural systems and the services they provide helps gauge pollution and its effects. The National Resources Inventory, concentrating on soil erosion and farming, illustrates the utility of such monitoring (Kellogg, RL, GW TeSelle, and JJ Goebel, 1994, Highlights from the 1992 National Resources Inventory, Journal of Soil and Water Conservation 49:521-527.) In areas such as agriculture and forestry research might consider how monitoring and sensing technologies can contribute to achieving greater efficiency, e.g., in application of chemicals. Research is also needed to develop reliable, low-cost monitoring systems for measuring total emissions to all environmental media stemming from an industrial facility. To consider a facility or ecopark inside a “bubble” we need to measure more than the smoke from one or a few chimneys or pipes.

b) Institional barriers and incentives

Overcoming the technical barriers associated with recovering materials from waste streams is a necessary but insufficient step for stimulating the greater use of wastes in the economy. Technology making recovery cheap and assuring high quality input streams must be followed by encouraging regulations and easy informational access. Finally a ready market must appear. Technologes are inseparable from institutional and social strategies. We need to learn why IE is not already the rule in industry and remove the impediments. Is this going to pay? From whose perspective? What balance of market-based, financial, regulatory, and legal strategies may dispose the industrial system to move in the desired direction at reasonable cost? For a conceptual introduction, see Frosch, R.A., 1996, Toward the End of Waste: Reflections on a New Ecology for Industry, Daedalus 125(3):199-212.

Market and Informational Barriers

Absent direct governmental interference, the markets for waste materials will ultimately rise or fall based on their economic vitality. Markets are sophisticated information processing machines whose strength resides in large part on the richness of the informational feedback available. The potential size and character of markets for what we currently label wastes remain open questions.

One option for waste markets are dedicated `Waste Exchanges’ where brokers trade industrial wastes like other commodities. By using internet technology to facilitate the flow of information, the need for centralized physical locations for either the stuff or for the traders in the stuff may be minimal. Research is needed on waste information systems that would form the basis for waste exchanges. Systems would need to list available industrial wastes as well as the means for buyers and sellers to access the information and conduct transactions. The degree to which such arrangements would allow direct trading or rely on the brokers to mediate transactions presents a further question. As part of the market analysis for waste materials, research is needed to understand past trends regarding the effect of price disparities between virgin and recovered materials, and to assess the effect of other economic factors associated with waste markets, such as additional processing and transportation costs. A further matter for investigation concerns whether some threshold level of industrial agglomeration is necessary to make such markets economically viable. For a recent review of this topic see USEPA, 1994, Review of Industrial Waste Exchanges, Report # EPA-530-K-94-003, Waste Minimization Branch, Office of Solid Waste, USEPA, Washington, D.C.

Progress is already being made on this front. The Chicago Board of Trade (CBOT), working with several government agencies and trade associations, has begun a financial exchange for trading scrap materials. Other exchanges such as the National Materials Exchange Network (NMEN) and the Global Recycling Network (GRN) facilitate the exchange of both materials recovered from municipal waste streams and of industrial wastes. Analysts might propose ideas for improving or facilitating the development of these exchanges. The value of such exchanges as a means of improving the flow of information depends on the deficiency of the current information flow, and how much this particular aspect of recycling plays in recycling’s success or failure. The CBOT is different from the other exchanges in that it is a financial market — starting now as a cash exchange with hopes that it will evolve into a forward and/or futures market.

A simple waste exchange is premised on the notion that opportunities for exchange are going unrealized. A cash exchange has a related premise that there is a need for what economists call price discovery. Finally, a futures or forward market exists to allow the risk associated with price volatility to be traded independent of the commodity.

The value of mechanisms such as the CBOT may be indirect, that is, price discovery may not be the main problem in the recyclables market, though important in some circumstances. Similarly, creating a market for buying and selling price risk through futures or forward contracts is useful but not likely to be extensive in the near term. The real value in the CBOT-type scheme may prove to be infrastructure and standards that it brings. The existence of the CBOT recyclables exchange requires specifications for scrap materials sufficiently robust that distant entities can trade sight unseen. Further, the CBOT system has forced the creation of dispute arbitration mechanisms. Analysts need to watch such developments and report on them.

Business and Financial

The private firm is the basic economic unit and collectively constitutes the mechanism for reducing inventions and innovations to practice, in service of environmental quality or other goals. Corporations employ a spectrum of organizational approaches to handle environmental matters. In some cases the environment division of a corporation concerns itself exclusively with regulatory compliance and the avoidance of civil liability for environmental matters. For other firms the environment plays a more strategic role in corporate decision making. Decisions made at the executive level strongly determine whether or not companies adopt new technologies and practices that will effect their environmental performance. Relatedly, the manner in which corporations integrate environmental costs into their accounting systems, for instance how to assign disposal costs, bears heavily on its ability to make both short and long term environmentally responsible decisions.

Research is needed to understand better the role of corporate organization and accounting practices in improving environmental performance and the incentives to which corporations respond for adopting new practices and technologies. Such studies would examine the learning process in corporate environments as well as investigate how corporate culture influences the ultimate adoption or rejection of environmentally innovative practices. For a study on the influence of corporate organization and culture on environmental decision making see Porter, M.E. and van der Linde, C., 1995, Toward a New Conception of the Environment-Competitiveness Relationship, Journal of Economic Perspectives 9(4):xx-xx. For an analysis of the current methods for integrating environmental costs into corporate accounting systems see Ditz, D., Ranganathan, J., and Banks, R.D., Green Ledgers: Case Studies in Corporate Environmental Accounting, World Resources Institute, 1995.

Several management/learning approaches (e.g., Total Quality Management, High Performance Workplace, Lean Production) currently enjoy widespread recognition in business. Many of the efficiency enhancing practices advocated by these approaches bear strong resemblance to those of IE, for example, the stress on performance measures and improved information flows. Research is needed to integrate IE principles into the framework of TQM and other management/learning approaches now widely recognized in diverse industries. For discussion of the new environmental context for private firms, see Allenby, B.R., Evolution of the Private Firm in an Environmentally Constrained World, The Industrial Green Game: Implications for environmental design and management, D.J. Richards, ed., National Academy Press, Washington, D.C., in press.

Regulatory

Environmental regulation strongly induces companies to appreciate the environmental dimensions of their operations. Businesses must respond to local, national, and international regulatory structures established to protect environmental quality. Although few question that regulations have helped to improve environmental quality, many argue that wiser, less commanding regulation would improve quality further at less cost. Agreements on hazardous waste tightly regulate the transport of these wastes across state and national boundaries, perhaps reducing opportunities for re-use and encouraging greater extraction of virgin stocks. Elements of the US federal regulatory apparatus for wastes, (e.g., RCRA and CERCLA) heavily regulate the storage and transport of wastes and dictate waste treatment methods that also serve to dissuade later efforts at materials recovery. Research is needed to determine the role of past and current environmental regulation in encouraging or discouraging materials recovery efforts.

With better understanding of the effects of past regulation, researchers could explore regulatory reforms to provide greater incentive to recover materials from waste. This line of inquiry into the effect of regulatory reform should include a broader analysis of policies that favor more environmentally sound industrial ecosystems, such as rewarding firms that exploit materials symbioses within and between facilities, providing incentives for investment in capital equipment that uses secondary materials inputs, promoting manufacturer responsibility for product after their useful life (i.e., takeback legislation), encouraging disposal practices that do not prevent later access to materials, and discontinuing subsidies to virgin materials producers. For a discussion of the design and implications of takeback legislation see Lifset, R., 1993, Take it Back: Extended producer responsibility as a form of incentive-based environmental policy, Journal of Resource Management and Technology 21(4):163-175.

Legal

Like regulation, the risk of civil liability from handling industrial waste also affects how much is recycled. The question of how developments in liability law affect decisions on the recovery of wastes from materials thus forms a further area for IE research. Such research would also investigate the potential for legal reforms that would facilitate greater materials recovery, for instance by limiting the responsibility of parties handling wastes, while maintaining the societal protection that the statutes were meant to ensure.

Though ostensibly unrelated to environmental law, a host of other statutory bodies can affect the development of efficient industrial ecosystems. Anti-trust statutes can effectively bar the agglomeration of enterprises necessary to effectively close materials loops. Consumer protection law can encumber efforts to improve the environmental design of products. Law governing external trade impact international resource allocation as well as the transport of recoverable wastes. Legal decisions relating to government procurement practices can also help or hurt markets for recovered materials and can directly exert pressure environmentally important sectors. The prime motivations for these laws (or rules) are usually not environmental. However, research in this area can identify cases where environmental considerations may indicate reforms that do not interfere with the otherwise desired political, social, or economic effect. For an extended discussion on the environmental dimension of trade law see Esty, D.C., 1994, Greening the GATT: Trade, environment, and the future, Institute for International Economics, Washington, D.C.

Comparisons among policies and firms was one of the promised benefits of indicators and metrics. Studies in business, regulation, and law can yield similar benefits. The studies should advance IE’s goal of lightening the environmental impact per person and per dollar.

Regional Strategies

Often geographic regions may provide a sensible basis for implementing IE. Industries tend to form spatial clusters in specific geographic regions based on factors such as access to raw materials, convenient transportation, technical expertise, and markets. This is particularly true for `heavy’ industries requiring large resource inputs and generating extensive waste quantities. Furthermore, the industries supporting large industrial complexes tend to be located within reasonable proximity to their principal customers. These compact complexes, such as the steel industry around the southern Great Lakes, provide excellent subjects for the flow charts of industrial ecology. Research can investigate the geographic, economic, political and other factors that contribute to the development of symbiotic materials flows among industries in a region and overall regional environmental performance. Due to the unique character of different regions this work could proceed in the form of case studies of regions containing a concentration of industries in a particular sector, for example, the steel industry in the southern Great Lake states.

Still more compact and so more ideal subject for IE are Ecoparks. They are industrial facilities clustered to minimize both energy and material wastes through the internal bartering and external sales of wastes. One industrial park located in Kalundborg, Denmark has established a prototype for efficient reuse of bulk materials and energy wastes among industrial facilities (Figure 6). The park houses a petroleum refinery, power plant, pharmaceutical plant, wallboard manufacturer, and fish farm that have established dedicated streams of processing wastes (including heat) between facilities in the park. Figure 6 shows a schematic diagram of the Kalundborg Industrial Ecopark. Research should investigate the prospects for similar industrial ecoparks. Factors include the need for high quality inputs streams a nd the reliability of supplies. What are the, business reasons for failure? Will Ecoparks self assemble? Research could also more broadly address the question of what spatial scales are most advantageous and practical for the establishment of regional industrial networks. Must they be physically co-located or is there a limited range of proximities for which regional networks could operate effectively?

IV. CONCLUSION

Industrial ecology is both a job and a discipline. As a discipline, industrial ecology seeks to provide rigorous technical understanding that fosters systems of production and consumption that can be sustained for very long periods of time, even indefinitely, without significant environmental harm. IE takes a systems view of industry in developing strategies to facilitate more efficient use of material and energy resources and to reduce the release of hazardous as well as non-hazardous wastes to the environment. The ultimate objective of the field is the emergence of an economy that cycles virtually all of the materials it uses, emitting only micro amounts of wastes and pollutants, while providing high and increasing services to the large human population already here and still likely to grow. For the United States, at least a factor of ten improvement in emissions per dollar of GDP seems needed during the next century.

Research on goals and concepts sets the framework of IE. An underlying question is what is to be learned from the analogy between natural and industrial ecosystems. Exploiting the biological analogy, how can we better understand the evolution of industrial metabolism and resource consumption in industrialized society and can we extract patterns of development that explain the past use of resources and indicate likely futures? Indispensable to this activity are accurate accounts of the size and structure of current resource use, and deeper understanding of the environmental implications of the manufacture, distribution, use, and disposal of present products.

Tracking the flow of an individual chemical element from initial extraction to final disposition usefully highlights the industries using that element and indicates opportunities for conserving resources and limiting harmful exposures. Following the resource needs and waste generation in individual firms and whole industrial sectors provides public and private managers the means to assess the environmental performance of a given firm or sector, learn more about the network of materials flows wherever they may lead, and isolate the factors and forces driving network development.

Research on implementation lies at the heart of IE as an applied science. Implementing IE in the diverse industries that form the economy will require both technological innovations and economic, regulatory, and legal incentives, or at least fewer disincentives. Technical research should focus on materials, products, and processes that lead to reduced resource use and waste generation in industry. Complementary efforts should consider the organizational factors and incentives that affect the ability of corporations and other actors to make operational changes that lead to improved environmental performance. Regional studies underscore the possibilities for cycling materials through local industrial networks and shed light on the impact of local or regional industrial activity on surrounding populations and landscapes.

First one and then another road may be the best route to the goal of IE. Research underlies them all. Improved means to work together, such as a research network on metals, are needed and must be actively considered during the next phase of the development of the field. At this stage, wisdom suggests that the research community limit the agenda of IE and do the limited work well. We should seek to answer specific questions that will produce environmental returns. For example, how shall we combine the harm per kilogram with the kilograms of wastes to guide control measures to the most important wastes and chart our progress in minimizing environmental impact? What indices will integrate environmental impact and so reveal success or failure in terms of the costs of such things as choice of material or product design or recovery of material?

Industrial ecology began with a shared intuition that a vastly superior economy for the environment is both technically feasible and necessary if the economy is to grow. The rough drawings we have been able to make so far are encouraging, and history seems to be on our side. Properly elaborated during the coming years, industrial ecology could show where the most powerful levers are, efficiently guiding us to the means for a lean, durable, and highly productive economy.

V. BIBLIOGRAPHY

The following bibliography lists publications that deal explicitly with industrial ecology as an area of research as well as related literature. The structure of the bibliography corresponds to the categories used in this report and also adds sections for cross-cutting references and relevant scholarly journals. The subsequent list of web sites can only hint at the rapidly evolving state of electronic information resources.

For publications explicitly or clearly within industrial ecology we have endeavored to sample the work of recognized active authors and researchers in this area. As regards the more general, related environmental literature cited, we have selected references to illustrate substantive analyses that may inform and contribute to industrial ecology research. References appear in chronological order within each section.

For excellent, complementary bibliographies, see Erkman, S., 1997, Industrial Ecology: A Historical View, Journal of Cleaner Production, in press; and Erkman, S., 1994, Ecologie industrielle, metabolisme industriel, et societe d’utilisation, Etude effectuee pour la Fondation pour le progres de l’homme, Geneva, e-mail: serkman@vtx.ch

Introduction (The Goal and the Role)

Ausubel, J.H., 1996, Can Technology Spare the Earth?, American Scientist, 84(3):166-178.

O’Rourke, D., Connelly, L., and Koshland, C.P., Industrial Ecology: A Critical Review, 1996, International Journal of Environment and Pollution 6(2/3):89-112.

Schulze, P., ed., 1996, Engineering Within Ecological Constraints, National Academy Press, Washington, D.C.

Cohen, J.E., 1995, How Many People Can the Earth Support?, Norton, New York.

Frosch, R.A., 1995, Industrial Ecology: Adapting Technology for a Sustainable World, Environment 37(10):16-37.

Graedel, T.E., and Allenby, B.R., 1995, Industrial Ecology, Prentice Hall, Englewood Cliffs, NJ.

Lowe, E. and Evans, L., 1995, Industrial Ecology and Industrial Ecosystems, Journal of Cleaner Production, 3(1-2).

Allenby, B.R., 1994, Industrial Ecology Gets Down to Earth, Circuits and Devices, January `94 pp. 24-28.

Allenby, B.R. and Richards, D.J., eds., 1994, The Greening of Industrial Ecosystems, National Academy Press, Washington, D.C.

Frosch , R.A., 1994, Industrial Ecology: Minimizing the Impact of Industrial Waste, Physics Today, 47(11):63-8.

Socolow, R., 1994, Six Perspectives from Industrial Ecology, p. 3-16 in Industrial Ecology and Global Change, Socolow, R., Andrews, C., Berkhout, F., and Thomas V., eds., Cambridge University Press, New York.

Allenby, B.R., 1992, Achieving Sustainable Development Through Industrial Ecology, International Environmental Affairs, 4(1):56-68.

Ayres, R.U. and Simonis, U., eds., 1992, Industrial Metabolism, United Nations University Press, Tokyo, Japan.

Ausubel, J.H., 1992, Industrial Ecology: Reflections on a Colloquium, Proceedings of the National Academy of Sciences of the USA 89(3):879-884.

Ehrenfeld, J.R. 1992, Industrial Ecology: A Technological Approach to Sustainability, Hazardous Waste & Hazardous Materials 9(3):209-211.

Frosch, R.A., 1992, Industrial Ecology: A Philosophical Introduction, Proceedings of the National Academy of Sciences of the USA 89(3):800-803.

Jelinski, L.W., Graedel, T.E., Laudise, R.D., McCall, W., and Patel, C.K.N., 1992, Industrial Ecology: Concepts and Approaches, Proceedings of the National Academy of Sciences of the USA 89(3):793-797.

Tibbs, H., 1992, Industrial Ecology: An Environmental Agenda for Industry, Whole Earth Review, Winter 1992. Pp. 4-19.

Ausubel, J.H. and Sladovich, H.E., eds., 1989, Technology and Environment, National Academy, Washington DC.

Frosch, R.A. and Gallopoulos, N.E., 1989, Strategies for Manufacturing, Scientific American, September 1989, pp. 144-152.

Huisingh, D., 1989, Waste Reduction at the Source: The Economic and Ecological Imperative for Now and the 21st Century, pp. 96-111 in Management of Hazardous Materials and Wastes: Treatment, Minimization, and Environmental Impacts, Majumdar, S.K., et al., eds., Pennsylvania Academy of Sciences.

Marchetti, C., 1979, On 1012: A Check on the Earth-Carrying Capacity for Man, Energy 4:1107-1117.

Ayres, R.U., 1978, Resources, Environment and Economics: Applications of the Materials/Energy Balance Principle, John Wiley & Sons, New York.

How Industrial Ecology Got its Name

Graedel, T.E., 1996, On the Concept of Industrial Ecology, Annual Review of Energy and Environment, Volume 21.

Allaby, M. ed., 1994, The Concise Oxford Dictionary of Ecology, Oxford University Press, Oxford, U.K.

Allenby, B.R. and Cooper, W.E., 1994, Understanding Industrial Ecology from a Biological Systems Perspective, Total Quality Environmental Management, Spring 1994 pp. 343-354.

Odum, E. 1989, Ecology and Our Endangered Life-Support Systems, Sinnauer Associates, Sunderland, MA.

Odum, H.T., 1988, Self-Organization, Transformity, and Information, Science 242:1132-1139.

Holling, C.S., 1986, Resilience of Ecosystems, Local Surprises and Global Change, pp. 292-317 in Clark, W.C. and Munns, R.E., eds., Sustainable Development of the Biosphere, Cambridge University Press, Cambridge, U.K.

Odum, H.T., 1986, Ecosystem Theory and Application, John Wiley and Sons, New York.

Holling, C.S., ed., 1978, Adaptive Environmental Assessment and Management, John Wiley and Sons, London, U.K.

Zero Emission Systems

Iantovksi, E., and Mathieu, P., Highly Efficient Zero Emission CO2-Based Power Plant, University of Liege, Dept. of Nuclear Engineering and Power Plants, Belgium.

Lave, L.B., Hendrickson, C.T., and McMichael, F.C., 1995, Environmental Implications of Electric Cars, Science 268:993-5.

Allam, R.J., and Spilsbury, C.G., 1992, A Study of the Extraction of CO2from the Flue Gas of a 500 MW Pulverised Coal Fired Boiler, Energy Conversion and Management 33(5-8):373-378.

Marchetti, C., 1989, How to Solve the COProblem Without Tears, International Journal of Hydrogen Energy 14(8):493-506

Lee, T.H., 1989, Advanced Fossil Fuel Systems and Beyond, pp. 114-136 in Ausubel, J.H., and Sladovich, H.E., eds., Technology and Environment, National Academy, Washington DC.

Hafele, W., Barnert H., Messner, S., Strubegger, M., and Anderer, J., 1986, Novel Integrated Energy Systems: The Case of Zero Emissions, pp. 171-193 in Clark, W.C. and Munns, R.E., eds., Sustainable Development of the Biosphere, Cambridge University, Cambridge, U.K.

Materials Substitution and Dematerialization

Wernick, I.K., Herman, R., Govind, S., and Ausubel, J.H., 1996, Materialization and Dematerialization: Measures and Trends, Daedalus 125(3):171-198. 

Wernick, I.K., 1994, Dematerialization and Secondary Materials Recovery: A Long-Run Perspective, Journal of the Minerals, Metals, and Materials Society, 46(4):39-42.

Bernardini, O. and Galli, R., 1993, Dematerialization: Long Term Trends in the Intensity of Use of Materials and Energy, Futures 25(4):431-448.

Rogich, D.G. and Staff, 1993, Materials Use, Economic Growth, and the Environment, Presented at the International Recycling Congress and REC’93 Trade Fair, U.S. Bureau of Mines, Washington, D.C.

Sousa, L.J., 1992, Towards a New Materials Paradigm, U.S. Bureau of Mines, Washington, D.C.

U.S. Bureau of Mines, 1990, The New Materials Society: Volume I-III, U.S. Government Printing Office, Washington, D.C.

Herman, R., Ardekani, S.A., and Ausubel, J.H., 1989, Dematerialization, pp. 50-69 in Technology and Environment, Ausubel, J.H. and Sladovich, H.E., eds., National Academy Press, Washington, D.C.

Waddell, L.M. and Labys, W.C., 1988, Transmaterialization: Technology and Materials Demand Cycles, Materials and Society 12(1):59-86.

Williams, R.H., Larson, E.D., and Ross, M.H., 1987, Materials, Affluence and Industrial Energy Use, Annual Review of Energy and Environment (12):99-144.

Tilton, J.E., ed., 1983, Materials Substitution: Lessons from the Tin-Using Industries, Resources for the Future, Inc., Washington, D.C.

Spencer, V.E., 1980, Raw Materials in the United States Economy 1900-1977, Bureau of the Census Technical paper No. 47, U.S. Department of Commerce/U.S. Department of the Interior, Washington D.C.

Malenbaum, W., 1978, World Demand for Raw Materials in 1985 and 2000, McGraw-Hill, New York.

Goeller, H.E. and Weinberg, A.M., 1976, The Age of Substitutability: What do we do when the mercury runs out, Science 191:683-689.

Functionality Economy

Stahel W. R., 1994, The Utilization-Focused Service Economy: Efficiency and Product-Life Extension, pp. 178-190 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds.

Stahel, W.R., 1993, Product Design and Utilization, The Product Life Institute, Geneva, Switzerland.

Materials Flow and Balance Analysis

Wernick, I.K., Waggoner, P.E., and Ausubel, J.H., Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the U.S., Journal of Industrial Ecology 1(3), in press, 1997

Ayres, R.U. and Ayres, L.W., The Life-Cycle of Chlorine: Part I-IV, Journal of Industrial Ecology, 1(1), in press, 1997.

Ayres, R.U. and Ayres, L.W., Use of Material Balances to Estimate Aggregate Waste Generation in the United States (Excluding Chemicals), in Measures of Environmental Performance and Ecosystem Condition, P. Schulze ed., National Academy Press, Washington, D.C., in press, 1997.

Kleijn, R., Tukker, A., and van der Voer, E., Chlorine in the Netherlands: Part I, Journal of Industrial Ecology, in press, 1997.

Sagar, A.D. and Frosch R. A., Industrial Ecology: A Perspective and an Example, Journal of Clean Technology, in press, 1997.

Ayres, R.U. and Ayres, L.W., 1996, Industrial Ecology: Towards Closing the Materials Cycle, Edward Elgar Publishing, Cheltenham, U.K.

Duchin, F. and Lange, G., 1995, Prospects for the Recycling of Plastics in the United States, Structural Change and Economic Dynamics, July 1995.

Environmental Defense Fund et al., 1995, Paper Task Force Recommendations for Purchasing and Using Environmentally Preferable Paper, Final Report & Technical Supplements I-V, (Duke University, Environmental Defense Fund, Johnson & Johnson, McDonald’s, The Prudential Insurance Company of America, Time Inc.), Published by the Environmental Defense Fund, New York.

Wernick, I.K. and Ausubel, J.H., 1995, National Materials Flows and the Environment, Annual Review of Energy and Environment, 20:462-492.

Thomas, V.M. and Spiro, T.J., 1995, An Estimation of Dioxin Emissions in the United States, Toxicological and Environmental Chemistry, (50):1-37.

Ayres, R.U. and Ayres, L.W., 1994, Chemical Industry Wastes: A Materials Balance Analysis, INSEAD, Fontainebleau, France.

Ince, P.J., 1994, Recycling of Wood and Paper Products in the United States, U.S. Dept. of Agriculture Forest Service, paper delivered at United Nations Economic Commission for Europe Timber Committee Team of Specialists on New Products, Recycling, Markets, and Applications for Forest Products, June 1994. Copies available from USDA Forest Service Forest Products Laboratory, Madison Wisconsin, 53705, USA.

Kinzig, A.P. and Socolow, R.H., 1994, Human Impacts on the Nitrogen Cycle, Physics Today 47:24-31.

Lave, L., Cobas-Flores, E., Hendrickson, C.T., McMichael, F.C., 1995, Using Input-Output Analysis to Estimate Economy-Wide Discharges, Environmental Science and Technology 29(9):420A-426A.

Duchin, F., 1992, Industrial Input-Output Analysis: Implications for Industrial Ecology, Proceedings of the National Academy of Sciences of the USA 89(3):851-855.

Stigliani, W.M. and Anderberg, S., 1992, Industrial Metabolism at the Regional Level: The Rhine Basin, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Thornton, I., 1992, Sources and Pathways of Cadmium in the Environment, IARC Scientific Publications 118:149-62, Lyon, France.

Life Cycles of Products

Ayres, R.U., 1995, Life Cycle Analysis: A Critique, Resources Conservation and Recycling, 14:199-223.

Graedel, T.E., Allenby, B.R., and Comrie, P.R., 1995, Matrix Approaches to Abridged Life Cycle Assessment, Environmental Science and Technology, 29:134A-139A.

Narodoslawsky, M., Krotscheck, C., 1995, The Sustainable Process Index (SPI): Evaluating Process According to Environmental Compatibility, Journal of Hazardous Materials, 14(2-3):383-397.

Weitz, K.A., Malkin, M., and Baskir, J.N., eds., 1995, Streamlining Life-Cycle Assessment Conference and Workshop, Research Triangle Institute, Research Triangle Park, NC.

Organization for Economic Co-operation and Development, Life-Cycle Management and Trade, 1994, Paris, France.

Klimisch, R.L., 1994, Designing the Modern Automobile for Recycling, pp. 172-178 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds., National Academy Press, Washington, D.C.

Sekutowski, J.C., 1994, Greening the Telephone: A Case Study, pp. 178-185 in The Greening of Industrial Ecosystems, B.R. Allenby and D.J. Richards, eds., National Academy Press, Washington, D.C.

Society of Environmental Toxicology and Chemistry [SETAC], 1994, Life-Cycle Assessment Data Quality: A Conceptual Framework, SETAC, Pensacola, FL.

Curran, M.A., 1993, Broad-Based Environmental Life Cycle Assessment, Environmental Science and Technology 27(3):431-436.

Naser, S.F., Keoleian, G.A., and Thompson, L.T., 1993, Design of a CFC-Free, Energy Efficient Refrigerator, Chemical Engineering Dept., University of Michigan, Available from the National Pollution Prevention Center, Ann Arbor, MI.

Sage, J., 1993, Industrielle Abfallvermeidung und deren Bewertung am Beispiel der Leiterplattenherstellung, dbv-Verlag, Technische Universitat Graz, Austria. [Describes Sustainable Process Index method for LCA]

Schmidt-Bleek, F., 1993, MIPS – A Universal Ecological Measure?, Fresenius Environmental Bulletin 2:306-311.

Society of Environmental Toxicology and Chemistry, 1993, Guidelines for Life-Cycle Assessment: A “Code of Practice,” SETAC, Pensacola, FL.

U.S. Environmental Protection Agency, 1993, Life-Cycle Assessment: Inventory Guidelines and Principles, EPA Report no. EPA/600/R-92/245, USEPA, Office of Research and Development, Washington, D.C.

Fava, J.A., ed., 1991, A Technical Framework for Life-Cycle Assessments, Society of Environmental Toxicology and Chemistry, Washington D.C.

Hocking, M.B., 1991, Paper Versus Polystyrene: A Complex Choice, Science 251:504-505.

Lubkert, B., Virtanen, Y., Muhlberger, M., Ingman, I., Vallance, B., and Alber, S., 1991, Life Cycle Analysis: IDEA an International Database for Ecoprofile Analysis, International System for Applied Systems Analysis, Laxenburg, Austria.

Steen, B. and Ryding, S-O., 1991, The EPS Environmental Accounting Method: An Application of Environmental Accounting Principles for Evaluation and Valuation of Environmental Impact in Product Design, Swedish Environmental Research Institute, Goetberg, Sweden.

Ahbe, S., Braunschweig, A., and Mueller-Wenk, R., 1990, Methodik fuer Oekobilanzen auf der Basis Oekologischer Optimierung, Schriftenreihe Unwelt Nr. 133, Bundestat fuer Unwelt, Wald and Landschaft (BUWAL), Bern, Switzerland. [Describes Swiss Eco-Points method for LCA]

Indicators

Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D., and

Schuetz, H., 1997, Resource Flows: The Material Basis of Industrial Economies, joint publication of World Resources Institute, Wuppertal Institute for Climate, Environment and

Energy, Netherlands Ministry of Housing, Planning, and Environment, and National Institute for Environmental Studies, available from World Resources Institute, Washington DC.

Wernick, I.K., and Ausubel, J.H., 1995, National Materials Metrics for Industrial Ecology, Resources Policy 21(3):189-198.

Discovering Dynamics in History

Ausubel, J.H., ed., 1997, Technological Trajectories and the Human Environment, National Academy Press, Washington, D.C.

Gruebler, A., 1996, Time for a Change: On the Patterns of Diffusion of Innovation, Daedalus 125(3): 19-42.

Curzio, A.Q., Fortis, M., and Zoboli, R., eds., 1994, Innovation, Resources, and Economic Growth, Springer-Verlag, New York.

Smil, V., 1994, Energy in World History, Westview, Boulder.

Vasey, D.E., 1992, An Ecological History of Agriculture: 10,000B.C.-A.D. 10,000, Iowa State, Ames IA.

Nakicenovic, N. and Gruebler, A. eds., 1991, Diffusion of Technologies and Social Behavior, International Institute for Applied Systems Analysis, Springler-Verlag, Berlin.

Gruebler, A., 1989, The Rise and Fall of Infrastructures: Dynamic Evolution and Technological Change in transport, Physica-Verlag, Heidelberg, Germany.

Ausubel, J.H., 1988, Regularities in Technological Development: An Environmental View, pp. 70-94 in Technology and Environment, Ausubel, J.H. and Sladovich, H.E., eds., National Academy Press, Washington, D.C.

International Comparisons

Erkman, Suren, 1995, Ecologie Industrielle, Metabolisme Industriel, et Socie’te’ D’utilisation, Supported by the Foundation for the Progress of Humanity, Paris.

Fishbein, B.K, 1994, Germany, Garbage, and the Green Dot, INFORM, New York.

Overcash, M.R., 1994, Cleaner Technology Life Cycle Methods: European Research and Development, Hazardous Waste & Hazardous Materials 11(4):459-477

Watanabe, C., 1993, Energy and Environmental Technologies in Sustainable Development: A View From Japan, The Bridge, Summer 1993, National Academy of Engineering, Washington D.C.

Smith, T.T., 1993, Understanding European Environmental Regulation, Conference Board Report #1026, Conference Board, New York.

World Bank, 1989, Environmental Accounting for Sustainable Development: Selected Papers from Joint World Bank Workshops, World Bank, Washington, D.C.

Hershkowitz, A. and Salerni, E., 1987, Garbage Management in Japan: Leading the Way, INFORM, New York.

Hoberg, G. Jr., 1986, Technology, Political Structure, and Social Regulation: A Cross-National Analysis, Comparative Politics, 18:357-376.

Choosing the Material

Eisenberger, P., ed., 1996, Basic Research Needs for Environmentally Responsive Technologies of the Future, Princeton Materials Institute, Princeton, NJ.

US Congress Office of Technology Assessment, 1993, Biopolymers: Making Materials Natures Way, OTA Report no. OTA-BP-E-102, Washington, D.C.

Allenby, B.R., 1992, Industrial Ecology: The Materials Scientist in an Environmentally Constrained World, Materials Research Bulletin (17)3:46-51.

Douglas, J.M., 1992, Process Synthesis for Waste Minimization, Industrial & Engineering Chemistry Research, v. 31 no. 238.

Mitchell, J.W., 1992, Alternative Starting Materials for Industrial Processes, Proceedings of the National Academy of Sciences of the USA 89(3):821-826.

National Academy of Sciences, 1989, Materials Science and Engineering for the 1990s, National Academy Press, Washington, D.C.

Ashby, M.F., 1979, The Science of Engineering Materials, pp. 19-48 in Science and Future Choice, Hemily, P.W. and Özdas, M.N., eds., North Atlantic Treaty Organization, Clarendon Press, Oxford, U.K.

Designing the Product

U.S. Congress Office of Technology Assessment, 1992, Green Products by Design: Choices for a CLeaner Environment, OTA-E-541, U.S. Government Printing Office, Washington, D.C.

Overby, C., 1990, Design for the Entire Life Cycle: A New Paradigm, 1990 ASEE Annual Conference Proceedings, Industrial & Systems Engineering Dept., Ohio University, Athens, OH.

Recovering the Material

Barsotti, A.F. and Kalyoncu, R., 1995, Implications of Flue Gas Desulfurization on the Mineral Industries, Available from Minerals Information Office, U.S. Geological Survey, Reston, VA.

Council for Agricultural Science and Technology, 1995, Waste Management and Utilization in Food Production and Processing, CAST, Ames, IA.

Philbin, M.L., 1995, Sand Reclamation 1995: Is it Time for Your Foundry?, Modern Casting 85:25-9.

Allen, D.T. and Behamanesh, N., 1994, Wastes as Raw Materials, pp. 68-96 in The Greening of Industrial Ecosystems, Allenby, B.R. and Richards, D.J., eds., National Academy Press, Washington, D.C.

Lave, L., Hendrickson, C.T., and McMichael, F.C., 1994, Rethinking How We Recycle, Environmental Science and Technology 28(1):19A-24A.

Hager, J.P., et al., eds., 1994, Extraction and Processing for the Treatment and Minimization of Wastes, The Minerals, Metals, and Materials Society, Warrendale, PA.

Ahmed, I., 1993, Use of Waste Materials in Highway Construction, Noyes Data Corporation, Park Ridge, NJ.

Butterwick, L. and Smith, G.D.W., 1986, Aluminum Recovery from Consumer Waste: Technology review, Conservation & Recycling 9(3):281-92.

Markets and Information

Frosch, R.A., 1996, Toward the End of Waste: Reflections on a New Ecology for Industry, Daedalus 125(3):199-212.

USEPA, 1994, Review of Industrial Waste Exchanges, EPAReport no. EPA-530-K-94-003, Waste Minimization Branch, Office of Solid Waste, USEPA, Washington, D.C.

Beckerman, W., 1992, Pricing for Pollution: An Analysis of Market Pricing and Government Regulation in Environment Consumption and Policy, Institute for Economic Affairs, London, U.K.

JETRO (Japan External Trade Organization), 1992, Ecofactory-Concept and R&D Themes, special issue of New Technology, FY 1992, Ecofactory Research Group, Agency of Industrial Science and Technology, Tokyo, Japan.

Page, T., 1977, Conservation and Economic Efficiency: An Approach to Materials Policy, Published for Resources for the Future by the Johns Hopkins University Press, Baltimore, MD.

Business and Finance

Richards, D.J., ed., The Industrial Green Game: Implications for Environmental Design and Management, National Academy of Engineering, National Academy Press, Washington, D.C., in press.

Allenby, B.R., Evolution of the Private Firm in an Environmentally Constrained World, in The Industrial Green Game: Implications for Environmental Design and Management, D.J. Richards, ed., National Academy Press, Washington, D.C., in press.

Battelle Pacific Northwest Laboratory, 1996, The Source of Value: An Executive Briefing and Sourcebook on Industrial Ecology, Prepared for the Future Studies Unit, Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency by Battelle, Pacific Northwest Laboratory, Richland, WA.

Fiksel, J., ed., 1996, Design for Environment: Creating Eco-Efficient Products and Processes, McGraw-Hill, New York.

Guile, B.R. and Cohon, J.L., 1996, Services and the Environment: More Questions Than Answers, Available from the National Academy of Engineering, Washington, D.C.

Bravo, C.E., 1995, A View of the United States Postal Service as a Service Sector Corporation, presented at the Fourth Annual National Academy of Engineering Workshop on Industrial Ecology, July 5-7, Woods, Hole, MA.

Ditz, D., Ranganathan, J., and Banks, R.D., 1995, Green Ledgers: Case Studies in Corporate Enronmental Accounting, World Resources Institute, Washington D.C.

Porter, M.E. and van der Linde, C., 1995, Green and Competitive: Ending the Stalemate, Harvard Business Review, September-October 1995, pp. 122-134.

Porter, M.E. and van der Linde, C., 1995, Toward a New Conception of the Environment-Competitiveness Relationship, Journal of Economic Perspectives 9(4).

Rejeski, D., 1995, The Forgotten Dimensions of Sustainable Development: Organizational Learning and Change, Corporate Environmental Strategy, 3(1):19-29.

National Academy of Engineering, 1994, Corporate Environmental Practices: Climbing the Learning Curve, National Academy Press, Washington, D.C.

Romm, J.J., 1994, Lean and Clean Management: How to Boost Profits and Productivity by Reducing Pollution, Kodansha America, New York.

Walley, N. and Whitehead, B., 1994, It’s Not Easy Being Green, Harvard Business Review May-June 1994 pp. 46-52.

3M Corporation, 1993, 3M Waste Minimization Guidelines, 3M Corporation, St. Paul, MN.

3M Corporation, 1982, Low- or Non-Pollution Technology Through Pollution Prevention: An Overview, 3M Corporation, St. Paul, MN.

Regulation and Law

Allenby, B.R. and Graedel, T.E., 1996, The Policy Implications of Industrial Ecology.

Andrews, C., 1994, Policies to Encourage Clean Technology, pp. 405-423 in Industrial Ecology and Global Change, Socolow, R., Andrews, C., Berkhout, F., and Thomas V., eds., Cambridge University Press, New York.

U.S. Congress, Office of Technology Assessment, 1995, Environmental Policy Tools: A User’s Guide, OTA Report no. OTA-ENV-634, US GPO, DC.

Portney, P, (ed.), 1990, Public Policies for Environmental Protection, Resources for the Future, Washington, DC.

Vig, N.J. and Kraft, M.E., 1990, Environmental Policy in the 1990s, Congressional Quarterly inc., Washington, DC.

Lester, J.P., 1989, Environmental Politics and Policy, Duke University Press, Durham, NC.

Rejeski, D., 1996, Clean Production and the Command-and-Control Paradigm, in Environmental Management Systems and Cleaner Production, John Wiley and Sons, New York.

Hodges, C.A., 1995, Mineral Resources, Environmental Issues, and Land Use, Science 268:1305-12.

Wilt, C. and Davis, G., 1995, Extended Producer Responsibility: A New Principle for a New Generation of Pollution Prevention, Proceedings of the Symposium on Extended Producer Responsibility, Washington, D.C., Nov. 14-15, 1995.

Esty, D.C., 1994, Greening the GATT: Trade, Environment, and the Future, Institute for International Economics, Washington, D.C.

National Academy of Engineering, 1994, Industrial Ecology: US/Japan perspectives, National Academy Press, Washington, D.C.

Lifset. R., 1993, Take it Back: Extended Producer Responsibility as a Form of Incentive-Based Environmental Policy, Journal of Resource Management and Technology, 21(4):163-175

President’s Commission on Environmental Quality, Deland, M.R., Chairman, 1993, Partnerships to Progress: The Report of the President’s Commission on Environmental Quality, Executive Office of the President, Washington D.C.

President’s Commission on Environmental Quality, Derr, K.T., Chairman, 1993, Total Quality Management: A Framework for Pollution Prevention, Executive Office of the President, Washington D.C.

MacDonald, G.J., 1989, Policies and Technologies for Waste Reduction and Energy Efficiency, MITRE Corporation, McLean, VA.

Regional Strategies

Lowe, E., et al., 1995, Fieldbook for the Development of Eco-Industrial Parks V. II, Final Report, Indigo Development, Research Triangle Institute Project Number 6050, Research Triangle Park, NC.

Cote’, R., et al., 1994, Designing and Operating Industrial Parks as Ecosystems, School for Resource and Environmental Studies, Faculty of Management, Dalhousie University, Halifax, Nova Scotia B3J 1B9.

Technology Studies (General and Specific)

General

AT&T Technical Journal, November/December 1995, Volume 74, Number 6, Special Issue-AT&T Technology and the Environment.

Fresenius Environmental Bulletin, 1993, Special issue on materials, 2(8):407-490.

Specific

Swan, C., 1996, Transportation Transformation, Ten Speed Press, Berkeley, CA.

Lovins, A.B., Barnett, J.W., and Lovins, L.H., 1995, Supercars: The Coming Light-Vehicle Revolution, Rocky Mountain Institute, Snowmass, CO.

Microelectronics and Computer Technology Corporation, 1993, Environmental Consciousness: A Strategic Competitiveness Issue for the Electronics and Computer Industry, The Microelectronics and Computer Technology Corporation, Austin, TX.

Overcash, M.R., 1993, Net Waste Reduction Analysis Applied to Air Pollution Control Technologies, Journal of the Air & Waste Management Association 43:1449-1554

INFORM, 1992, Environmental Dividends: Cutting More Chemical Wastes, Dorfman, M.H., Muir, W.R., and Miller, C.G., eds., INFORM, New York.

Douglas, J.M. , 1988, Conceptual Design of Chemical Processes, McGraw-Hill, New York, NY.

Fathi-Afshar, S. and Yang, J.C., 1985, The Optimal Structure of the Petrochemical Industry for Minimum Cost and Least Gross Toxicity of Chemical Production, Chemical Engineering Science 40, 781.

INFORM, 1985, Cutting Chemical Wastes, INFORM, New York.

Overcash, M.R., 1985, Land Treatment of Wastes: Concepts and General Design, Journal of Environmental Engineering 111:141-160

Wastes (General )

General

Gottlieb, R., ed., 1995, Reducing Toxics, Island Press, Washington, D.C.

Rathje, W. and Murphy, C., 1992, Rubbish, Harper Collins, New York.

U.S. Congress, Office of Technology Assessment, 1992, From Pollution to Prevention: A Progress Report on Waste Reduction, OTA Report no. OTA-ITE-347, U.S. Government Printing Office, Washington, D.C.

U.S. Congress, Office of Technology Assessment, 1986, Serious Reduction of Hazardous Waste for Pollution Prevention and Industrial Efficiency, OTA Report no. OTA-ITE-317, U.S. Government Printing Office, Washington, D.C.

Consumers

Wernick, I.K., 1996, Consuming Materials: The American Way, Technological Forecasting and Social Change, 53(1).

Lebergott, S., 1993, Pursuing Happiness: American Consumers in the Twentieth Century, Princeton University Press, Princeton, NJ.

Durning, A., 1992, How Much is Enough? The Consumer Society and the Future of the Earth, W.W. Norton & Company, New York.

Uusitalo, L., 1986, Environmental Impacts of Consumption Patterns, St. Albans Press, New York.

Global Issues

Socolow, R., Andrews, C., Berkhout, F., and Thomas V., eds., 1994, Industrial Ecology and Global Change, Cambridge University Press, New York.

Waggoner, P.E., 1994, How Much Land Can Ten Billion People Spare for Nature, Council for Agricultural Science and Technology, Task Force Report no. 121, Ames, IA.

Ayres, R.U., 1992, Toxic Heavy Metals: Materials Cycle Optimization, Proceedings of the National Academy of Sciences of the USA 89(3):815-20, National Academy Press, Washington, D.C.

Forrest, D. and Szekely, J., 1991, Global Warming and the Primary Metals Industry, Journal of the Minerals, Metals, and Materials Society, 43(12):23-30.

General

Barsotti, A.F., 1994, Industrial Minerals and Sustainable Development, U.S. Bureau of Mines, Division of Minerals Commodities, Branch of Industrial Minerals, Washington, D.C.

Sawyer, D.T. and Martell, A.E., eds., 1992, Industrial Environmental Chemistry, Plenum Press, New York.

Hirschhorn, J.S., 1991, Prosperity Without Pollution: The Prevention Strategy for Industry and Consumers, Van Nostrand Reinhold, New York.

National Academy of Sciences, 1991, Industrial Ecology, Proceedings from NAS colloquium on industrial ecology held May 20-21, 1991, Washington, D.C.

VI. JOURNALS, DATA SOURCES, AND WEB RESOURCES

Journals

Environmental Science & Technology, Glaze, W. ed., American Chemical society

Journal Homepage: https://acsinfo.acs.org/hotartcl/est/est.html

International Journal of Environmentally Conscious Manufacturing, Jeff Weinrach, ed., POB 20959, Albuquerque NM.

Journal of Hazardous Materials, G. F. Bennett, ed., Dept. of Chemical Engineering, University of Toledo, 2801 West Bancroft, Toledo OH 43606

Journal of Industrial Ecology, Quarterly, Lifset, R., ed., MIT Press.

Journal homepage: https://www-mitpress.mit.edu/jrnls-catalog/indus-ecol.html

Journal of Cleaner Production, , Huisingh, D., ed., Elsevier Science

Journal homepage: https://webhost1.cerf.net/cas/estoc/contents/SAG/09596526.html,

Science of the Total Environment, Weekly, Nriagu, J.O., ed., Elsevier Science

Journal homepage: https://www.elsevier.com/locate/estoc

Scrap Recycling and Processing, Institute of Scrap Recycling Industries, A bi-monthly trade journal for the scrap reprocessing industry. Homepage: https://www.isri.org/pubcat00.htm#scrapmag

Selected Data Sources (General and Specific)

General

Organization for Economic Cooperation and Development (OECD), 1994, Environmental Indicators, Paris, France.

U.S. Bureau of the Census, 1975, Historical Statistics of the United States, Colonial Times to 1970, U.S. Government Printing Office, Washington, D.C.

U.S. Bureau of the Census, Annual editions, Statistical Abstract of the United States, U.S. Government Printing Office, Washington, D.C.

Council on Environmental Quality, Annual editions, Environmental Quality, U.S. Government Printing Office, Washington, D.C.

Specific

INFORM, 1995, Toxics Watch 1995, INFORM, New York.

Allen, D.T. and Jain, R.K., eds., 1992, Special Issue on National Hazardous Waste Databases, Hazardous Waste & Hazardous Materials 9(1):1-111.

American Petroleum Institute, 1992, Generation and Management of Wastes and Secondary Materials: Petroleum Refining Performance 1989 survey, API, Washington, D.C.

U.S. Congress, Office of Technology Assessment, 1992, Managing Industrial Solid Wastes from Manufacturing, Mining, Oil and Gas Production, and Utility Coal Combustion, OTA Report no. OTA-BP-O-82, U.S. Government Printing Office, Washington, D.C.

U.S. Environmental Protection Agency, 1992, Characterization of Municipal Solid Waste in the United States: 1992 Update, Final Report, EPA Report no. 530-R-92-019, USEPA, Washington, D.C.

U.S. Bureau of Mines, 1991, Minerals Yearbook 1991, U.S. Government Printing Office, Washington, D.C.

Franklin, W.E., and Associates, 1990, Paper Recycling: The View to 1995, Summary Report, Prepared for the American Paper Institute Feb. 1990, Prairie Village, KS.

U.S. Environmental Protection Agency, 1990, Report to Congress on Special Wastes from Mineral Processing, Summary and Findings, Methods and Analysis, EPA Report no. 570-SW-90-070C, USEPA, Washington, D.C.

U.S. Environmental Protection Agency, 1988, Report to Congress: Solid Waste Disposal in the Unites States, Vols. 1-2, EPA Report no. EPA/530-SW-89-033A, USEPA, Washington, D.C.

U.S. Environmental Protection Agency, 1986, Waste Minimization: Issues and Options, EPA Report no. 530-SW-86-04, USEPA, Washington, D.C.

Chemical Manufacturers Association, Annual editions, United States Chemical Industry Statistical Handbook, Chemical Manufacturers Association, Washington, D.C.

U.S. Bureau of Mines, Annual editions, Mineral Commodity Summaries, U.S. Government Printing Office, Washington, D.C.

U.S. Bureau of Mines, Annual editions, Mineral Facts and Problems, U.S. Government Printing Office, Washington, D. C.

Wards Automotive Yearbook, Annual editions, Wards Communications. Detroit, MI.

Website List

Center for Clean Technology (CCT) at UCLA
https://cct.seas.ucla.edu/cct.pp.html

Global Recycling Network
https://grn.com/grn/ora.html

National Materials Exchange Network
https://www.earthcycle.com/nmen

IEEE white papers on sustainable development and industrial ecology
https://www.ieee.org/ehs/ehswp.html

USEPA Homepage
https://www.epa.gov

Program for the Human Environment, Rockefeller University
https://phe.rockefeller.edu

World Resources Institute (databases)
https://www.wri.org/wri/

National Pollution Prevention Center for Higher Education at the University of Michigan
https://www.umich.edu/~nppcpub/ind.ecol.html

The Technology, Business and Environment Program at the Massachusetts Institute of Technology
https://web.mit.edu/ctpid/www/tbe

The Department of Energy Pollution Prevention Clearinghouse
https://146.138.5.107/epic/html

The Department of Energy Efficiency and Renewable Energy Network (EREN)
https://www.eren.doe.gov

Oak Ridge National Laboratory CADDET (Database of demonstration projects on energy efficient and renewable energy technologies)
https://www.ornl.gov/CADDET

Center for Green Design and Manufacturing (UC Berkeley)
https://euler.berkeley.edu/green/cgdm.html

VI. Biographical Information

David T. Allen is a Professor of Chemical Engineering at the University of Texas at Austin. From 1987 to 1995 Dr. Allen led the Waste Reduction Engineering research effort at the University of California at Los Angeles.

Braden R. Allenby is Vice President for Environment, Safety, and Health at AT&T. Formerly, Dr. Allenby directed the Office of Energy and Environmental Systems at Lawrence Livermore National Laboratory. Dr. Allenby has written and lectured widely on industrial ecology, especially as it relates to the electronics industry.

Jesse H. Ausubel directs the Program for the Human Environment at The Rockefeller University in New York City, where he has led a series of studies exploring how technology can spare demand for materials, energy, land, and other resources.

Robert U. Ayres is Sandoz Professor of Management and the Environment at the European Institute of Business Administration (INSEAD) near Paris. Dr. Ayres has pioneered studies of marterials flows, especially of heavy metals.

R. Darryl Banks directs the program for Technology and the Environment at the World Resources Institute in Washington DC, having served earlier as one of New York State’s top environmental officials. His recent work has included studies of improving methods for corporate environmental accounting.

Faye Duchin is Dean of the School of Humanities and Social Sciences at Rensselaer Polytechnic Institute. An economist, Prof. Duchin has developed numerous applications of input-output modeling, including to issues of environmentally sound development, in the United States as well as developing countries.

John R. Ehrenfeld directs the Program on Technology Business & Environment at the Center for Technology Policy & Industrial Development at the Massachusetts Institute of Technology. Dr. Ehrenfeld’s research focuses on the way businesses manage environmental concerns and implement organizational and technological changes to improve their environmental performance.

Peter Eisenberger directs the Earth Institute as well as the Lamont Doherty Earth Observatory, both at Columbia University. Formerly, Dr. Eisenberger headed the Princeton Materials Institute and worked as an industrial research physicist investigating the properties of materials.

Robert A. Frosch, a Senior Research Fellow at the John F. Kennedy School of Government at Harvard University, earlier served as Vice President for Research of General Motors. Dr. Frosch also serves as leader of Industrial Ecology project in the Technology and Environment Program at the National Academy of Engineering.

Thomas E. Graedel is Professor of Industrial Ecology at the Yale School of Forestry & Environmental Studies. While a member of the technical staff at AT&T Bell Laboratories, Dr. Graedel published more than two hundred articles in areas ranging from atmospheric chemistry to environmental life cycle assessment, and co-authored the first university textbook on industrial ecology.

Bruce R. Guile is managing director of the Washington Advisory Group, a consultancy specializing in management of technology and research. From 1989-1995, Dr. Guile served as director of programs for the National Academy of Engineering. He edits the policy perspectives section of the Journal of Industrial Ecology.

Reid Lifset is Associate Director of the Industrial Environmental Management Program at the Yale School of Forestry & Environmental Studies and editor of the Journal of Industrial Ecology. His research focuses on the application of industrial ecology and policy analysis to solid waste problems in the United States.

David Rejeski serves in the White House Office of Science and Technology Policy where he works on developing and implementing the National Environmental Technology Strategy. Formerly Mr. Rejeski headed the Office of Policy, Planning, and Evaluation at the US EPA.

Deanna Richards directs the Technology and Environment program at the US National Academy of Engineering (NAE). Dr. Richards has published in the area of advanced biological wastewater treatment systems and overseen the publication of several volumes on industrial ecology at the NAE.

Robert H. Socolow directs the Center for Energy and Environment Studies at Princeton University. Dr. Socolow has published widely on technology-environment interactions, especially in the field of energy, and was a contributing editor to Industrial Ecology and Global Change.

Iddo Wernick is a Research Associate in the Program for the Human Environment at The Rockefeller University and a Research Scientist with Columbia’s Earth Institute. A physicist by training, Dr. Wernick’s research has focused on materials production and usage in the United States.

Figures

Figure 1. Chlorine process-product flows for Western Europe 1992 (kMT Chlorine content). The figure (left to right) indicates the processes and quantities involved in chlorine chemical production. The figure demonstrates that even large and complex materials flow streams such as those for chlorine can be successfully tracked and accounted for, thus indicating where system losses occur. Rectangles refer top chemical processes for conversion and circles refer to products. Source: Ayres, R.U. and Ayres, L.W., The Life-Cycle of Chlorine: Part I-IV, Journal of Industrial Ecology, in press.
Figure 2. The spaghetti diagram indicates the flows of metals among a sample of metals processors in New England. The arrows indicate the direction of the flow, while the number of lines indicate the magnitude. Note the presence of waste reclaimers, dismantlers, and scrap dealers that allow for system closure. Source: Frosch, R.A., Clark, W.C., Crawford, J., Tschang, T.T., and Weber, A., 1996, The Industrial Ecology of Metals: A reconnaissance, From a talk delivered at the Royal Society/Royal Academy of Engineering meeting, May 29-30, London, U.K.
Figure 3. Material flows in the US forest products industry, 1993. Box heights are to scale. All values in million cubic meters. For paper we consider one metric ton to be equivalent to two cubic meters. a) Based on the ratio of logging residues (15.1%) and `Other Removals’ (6.6%) to all removals for 1991. b) The dashed lined entering paper represents the inputs from “recycled.” We estimate that 100 million cubic meters of the woody mass entering paper mills undergoes combustion for energy. In 1991 the paper industry (SIC 26) generated over 1.2 quadrillion Btu from pulping liquors, chips, and bark. c) Construction includes millwork such as cabinetry and moldings. `Other’ includes industrial uses such as materials handling, furniture, and transport. d) The ratio of end uses relies on Btu data from the USDOE Energy Information Administration. The category `Residential and Commercial’ includes Electric Utilities. Sources: Ince 1994; Energy Information Administration 1994; U.S. Department of Agriculture 1993; U.S. Bureau of the Census 1995; Amer. Forest & Paper Assoc., 1995; Smith et. al. 1994; and data from the Engineered Wood Products Assoc., Tacoma WA. and the Western Wood Products Assoc., Portland, OR.
Figure 4. This figure shows world cadmium consumption by end use. Source: Cadmium Market Update Analysis and Outlook, Roskill Information Services Ltd., 1995, London.
Figure 5. T.K. Sherwood empirically identified a relationship between the selling prices of materials and their dilution (or degree of distribution in the initial matrix from which they are separated). The diagonal line denotes this empirically observed linear relationship. The data points indicate the minimum concentration of metals wastes typically recycled as a function of metal price. Points lying above the line indicate the existence of metals in wastes typically not recycled even though their concentration exceeds those found in virgin ores. Source: Allen, D.T. and Behamanesh, N., 1994, Wastes as Raw Materials, pp. 68-96 in The Greening of Industrial Ecosystems, Allenby, B.R. and Richards, D.J., eds., National Academy Press, Washington, D.C..[Key for chemical symbols: As-arsenic, Ag-silver, Ba-barium, Be-beryllium, Cd-cadmium, Cr-chromium, Cu-copper, Hg-mercury, Ni-nickel, Pb-lead, Sb-tin, Se-selenium, Tl-tellurium, V-vanadium, Zn-zinc]
Figure 6. A schematic diagram of the industrial ecopark located in Kalundborg, Denmark. The figure shows the industrial concerns that occupy the park, the materials and energy flows between them, and the nature and fate of outgoing material and energy streams. After Allenby, B.R. and Graedel, T.E., 1994, Defining the Environmentally Responsible Facility, AT&T, Murray Hill, NJ.

The Virtual Ecology of Industry

We now forecast storms from virtual weather, recessions in virtual economies, and victories on virtual battlefields. Software companies have scored popular successes with simulations of cities, Earth history, and ant colonies. Jet pilots and nuclear power plant operators train on video displays before their hands wield the actual controls. Numerical models form the basis of all these simulations.

What are the prospects for a virtual ecology of industry that can help us toward the goal of a micro-emissions economy? The editors of The Journal of Industrial Ecology asked me to speculate about this question in what we hope will become a regular column on modeling and simulation. My judgment is that many precedents offer encouragement.

Continuous process industries, such as petrochemicals, have long sought to channel every input into profitable output. Chemical engineers already design and test refineries in detail on computers before companies buy the first length of pipe. Energy engineers have extended the concept of a petrochemical complex to a virtual “integrated energy system” which transforms crude oil and other energy materials, air, water, and other inputs into liquid fuels, electricity, heat, fertilizer, and other outputs with potentially zero emissions.i

In the many industries which produce in batches rather than in continuous flows, design and analysis of integrated manufacturing systems have also advanced markedly.ii Weighing the wastes industries now create, opportunities must abound to handle materials better, reduce wastes, and design “custom” wastes that can re-enter the economy or be safely filed away.iii Modest extensions of the simulatory arts in sectors from automotive to pulp and paper may identify quickly and effectively the leverage for lifting plants toward these goals.

Leverage is a key word. One major reason to formalize the flows and relations within a plant into equations and computer code founded on sound data is to assess numerically the power to achieve outcomes with practical effort. In a virtual plant we want to discover the levers connected to the task and resting on a fulcrum near the task.

Above the level of the plant, fewer precedents for simulation exist. Nevertheless, Peter Ince’s chart of the materials flowing from the forest into lumber, paper, and fuel invites simulation of the industrial ecology of wood products.iv Surely worthwhile occasions exist for researchers, consultants, and managers to build dynamic simulations of materials (and energy) flows at the level of an industrial sector. The vast yet overlooked services industries appear to be virtual virgins.

And then the challenge looms to capture the actual and potential flows across diverse sectors or enterprises at a useful level of detail. Surely we could simulate the touted collection of symbiotic industries in Kalundborg, Denmark, as well as imaginary Eco-Parks.

Some of the experiments industrial ecologists might wish to undertake will be excessively costly or risky unless we can build expert and public confidence through simulations. For strawberries, albeit modified with modern genetic means, field tests are hard enough. Before any material existence, the factory, firm, or landfill of the future may well be required to operate vividly and convincingly in our virtual goggles.

We know life holds incidents and interactions no simulation will ever capture. Had we modeled the ecology of medieval industry, would we have seen that low-cost linens effected by the spinning wheel would lead to abundant rags that could become cheap paper that would permit a printing industry? Perhaps not. But today we have a lot more waste to remodel. Let’s begin. SimFactory and CyberEcoPark may help.

26 August 1996

End notes

  1. See pp. 129-135 in Thomas H. Lee, Advanced Fossil Fuel Systems and Beyond, pp. 114-136 in Jesse H. Ausubel and Hedy E. Sladovich, eds., Technology and Environment, National Academy Press, Washington DC, 1989.
  2. W. Dale Compton and Joseph A. Heim, eds., Manufacturing Systems: Foundations of World-Class Practice, National Academy Press, Washington DC, 1992.
  3. Robert A. Frosch, Toward the End of Waste: Reflections on a New Ecology of IndustryDaedalus 125(3):199-212, 1996.
  4. Peter J. Ince, Recycling of Wood and Paper Products in the United States, U.S. Dept. of Agriculture Forest Service, paper delivered at United Nations Economic Commission for Europe Timber Committee Team of Specialists on New Products, Recycling, Markets, and Applications for Forest Products, June 1994. Copies available from USDA Forest Service Forest Products Laboratory, Madison Wisconsin, 53705, USA.

Verification of International Environmental Agreements

This paper was first published in 1992 in the Annual Review of Energy and Environment, https://www.annualreviews.org. The paper posted here was scanned and re-typeset in HTML. Every effort was made to minimize errors. Please email us at phe@mail.rockefeller.edu if you would like a hard copy of the original paper.

Abbreviations used: BWU, blue whale unit; CEMS, continuous emissions monitoring systems; CFCs, chlorofluorocarbons; CFE, Treaty on Conventional Armed Forces in Europe; CITES, Convention on International Trade in Endangered Species; CTB, comprehensive test ban; EC, European Community; ECE, United Nations Economic Commission for Europe; EEZ, Exclusive Economic Zone; EMEP, Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe; GAO, General Accounting Office (U.S. Congress); IAEA, International Atomic Energy Agency; ICES, International Council for the, Exploration of the Seas; IMCO, Inter-governmental Maritime Consultative Organization (IMCO after 1981); IMO, International Maritime Organization (IMCO before 1981); INF, Intermediate Nuclear Forces Treaty; IOS, International Observer System; IUCN, International Union for the Conservation of Nature (recently renamed to World Conservation Union); IWC, International Whaling Commission; LRTAP, Convention on Long Range Transboundary Air Pollution; LTB (T), Limited Test Ban (Treaty); MARPOL, Convention for the Prevention of Pollution from Ships; MSY, maximum sustainable yield; NAAQS, National Ambient Air Quality Standards (U.S.); NGOs, nongovernmental organizations; NEAFC, Northeast Atlantic Fisheries Commission; NPT, Nuclear Non-proliferation Treaty; NTM, national technical means; OECD, Organization for Economic Cooperation and Development; OSHA, Occupational Safety and Health Administration (U.S.); OSL, on-site inspection; OSIA, On-site Inspection Agency (U.S.); SALT, Strategic Arms Limitation Talks; TAC, total allowable catch; UNEP, United Nations Environment Programme.

INTRODUCTION

Problems and opportunities frequently cross national borders. Informal and formal international arrangements-loosely termed “regimes,” defined here as systems of rule or government that have widespread influence–are for the collective management of such transboundary issues. Regimes are pervasive; their number and extent have grown markedly in the 20th century, especially since the Second World War.

Students of the international system study the conditions under which regimes are formed and the factors that contribute to their success. These include distribution of power among states, the nature of the issue, its linkages to other issues, the roles and functions of international organizations, the processes of bargaining and rule-maldng, and the influence of domestic politics (1-3). Scholars also theorize how regimes are maintained and changed (4-6).

In the past two decades students of international cooperation have increasingly applied their tools to issues of the environment and natural resources (7-9). A few studies have critically assessed international cooperation for transboundary environmental protection and drawn tentative conclusions on factors that lead to effective international regimes (8, 10-12). Studies of local management of common natural resources also yield relevant lessons for international environmental cooperation (13).

For several reasons, assessing the effectiveness of international environmental agreements requires study of how compliance is verified. International agreements that are verifiable are more likely to succeed in both negotiation and implementation. The process of verification builds confidence in existing formal and informal agreements, thus improving the prospects for future cooperation and compliance. Verification activities produce information that can provide the technical basis for future agreements and shared understanding. Such information also can provide the basis for sanctions, which depend upon timely, legitimate, and accurate information. Information from verification activities helps to assess how effectively a regime has met its goals and whether changes in the regime are needed to improve effectiveness. By increasing transparency–the extent to which behavior and violations are visible to others–verification ran help build norms that influence behavior and contribute to regime effectiveness.

These propositions have been examined extensively for arms control (e.g. Refs. 14-16), but less for other issues, including protection and management of the natural environment. This paper is a review of the functions, concepts, and theories related to verification of international environmental agreements. Other useful reviews that have come to our attention are Fischer’s study of the verification provisions in 13 international environmental treaties particularly as they relate to a global warming convention (17, 18) and the U.S. General Accounting Offices (GAO) evaluation of reporting and monitoring under 8 major international environmental treaties (19).

MOTIVATION AND OUTLINE

This review is designed to address the question of whether verification is a topic deserving more social concern and research. Our approach is organized around four smaller questions. First, based on existing international environmental regimes, how is verification conducted and what are the relevant concepts? Second, how is verification conducted under domestic environmental law? Domestic experience is important because there is extensive study of how domestic compliance with pollution laws is verified and because international agreements are typically implemented by domestic institutions. Third, can major social science perspectives explain the demand for and character of verification that is observed in existing regimes? And, do those perspectives explain the differences between arms control verification and environmental verification? Fourth, what do the answers to these questions suggest for prospective regimes such as to control global climate change, preserve biodiversity, and limit deforestation?

The paper addresses these questions seriatim. To illustrate the arguments, we first describe nine international environmental regimes. For each we provide a summary of the problem, a synopsis of the main legal agreements and approach to solving the problem, and an assessment (where possible) of compliance with the agreement(s). Second, we describe the functions and concepts related to verification of international environmental agreements. Third, we review domestic experience with compliance and enforcement of environmental laws, primarily in the United States, and offer some comparisons of that setting with the international. Fourth, we employ several theoretical perspectives to explore the patterns of verification observed in the nine cases and to explain the differences between environmental and arms control verification. In conclusion we apply some of these findings to prospective agreements. For the reader unaware of the related arms control literature, a brief review is provided in an appendix.

DEFINITIONS

We distinguish five terms. Monitoring is the process of acquiring the information used to facilitate decision-making and implementation of the agreement. Compliance is the adherence to some formal or informal commitment. Verification is the process of determining whether or not a party is in compliance. Enforcement is the suite of sanctions and incentives to entice compliance. (“Verification regime” has been used to mean all of the above, especially in the arms control literature; we avoid it because of its imprecision.) Implementation is the process of putting in place laws, activities, and institutions to meet obligations of an agreement. This paper focuses on monitoring, compliance, and verification, though enforcement and implementation are mentioned.

There are two caveats. The discussion relies heavily on US scholarship, especially in the domestic context. The literature reviewed is mostly indirectly on the verification of international environmental agreements; little has been written directly on the topic.

INTERNATIONAL ENVIRONMENTAL PROTECTION: NINE CASES

More than 100 fon-nal international agreements to protect the environment exist (20); of these, most are in force. To illustrate how verification is practiced in these cases, we survey nine regimes for international environmental protection, some of them encompassing more than one formal agreement (Table 1). These cut across four types of environmental protection: atmospheric, oceanic, management of natural resources, and preservation of natural resources. Both global and regional agreements are represented.

Atmospheric Cases

LIMITED NUCLEAR TEST BAN Many reinforcing events in the mid-1950s led to concern about radioactive fallout from atmospheric testing of nuclear weapons. The public feared the health effects of fallout, radioactive elements were, for example, measurable in milk. The test ban also became a cause of the nuclear disarmament movement (and still is). Though primarily an arms control issue, the case is included here because of the role that health effects played in forcing the agreement.

In 1958 a US-USSR-UK Conference of Experts proposed an international monitoring system for verification of a comprehensive test ban (space, underwater, atmospheric, and underground). The issue preventing agreement was the delectability of underground explosions since detection in the atmosphere, underwater, and in outer space was relatively easy. Through the early 1960s the Conference of Experts met and negotiated the terms of a verification system, presenting proposals with different degrees of cost and intrusiveness and responding to innovative challenges that the verification systems they designed could be evaded. In addition to direct negotiations, both the United States and the Soviet Union attempted to sway world opinion through a series of short-lived unilateral test bans. The Cuban Missile Crisis (1962) focused attention on arms control, as did continued fears of health effects from large atmospheric nuclear tests (21).

Table 1. Summary of the nine cases (scanned JPEG)

In the early 1960s two proposals existed: one for a comprehensive test ban (CTB) and the other for a limited test ban (LTB) to ban tests everywhere except underground. A Limited Test Ban Treaty (LTBT) resulted when the United States and the Soviet Union could not agree on an acceptable number of annual on-site inspections for verifying compliance with a CTB. Compliance with the LTB has been perfect; both sides easily moved their weapons development programs underground. There have been infractions due to venting-accidental escape of radioactive gases from underground tests–but both sides see these as minor issues. By all measurements, ambient concentrations of radioactive elements from weapons testing have declined markedly since the LTB went into effect.

ACID RAIN IN EUROPE From the late 1960s the Scandinavian countries have claimed that the acidity of their rain was increasing, that it was caused by European emissions upwind, and that the acidity was damaging Scandinavian lakes (49). Beginning in 1972 the Organization for Economic Cooperation and Development (OECD) conducted a study of long-range transport of air pollutants to assess such claims. That program was given independent status in 1978 as the Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP). EMEP now consists of a network to monitor the chemical composition of rain (including acidity) and three international centers to analyze that and other data (24).

In parallel, at the level of high politics and quite disconnected from the OECD/EMEP activities, at the 1975 Helsinki Conference on Security and Cooperation in Europe the Soviet Union pushed for some forum to continue the east-west dialogue begun during detente of the early 1970s. The topic chosen was the environment, and the U.N. Economic Commission for Europe (ECE) was chosen as the forum for negotiation because its membership includes all relevant parties (including the United States and Canada) and had the needed organizational infrastructure for negotiating a treaty. The negotiations’ first formal product was the Convention on the Long-Range Transmission of Air Pollution (LRTAP), signed in 1979 (26). Almost all states in Europe have joined LRTAP. The main achievement has been to strengthen understanding of the links between acid-causing emissions, long-range transport and damage to health, property, and ecosystems. Few parties accepted these arguments in the 1960s and 1970s when they were first made by the Scandinavians; now, all do (24).

Three protocols to LRTAP form the substance of the agreement. The first (1984) funds the EMEP monitoring network, thus formally bringing it (and its scientific products) into the LRTAP process. The second (1985) calls for a 30% reduction in emissions of sulfur dioxide, the leading cause of acidification; not all countries have joined the sulfur protocol. A third protocol, on emissions of nitrogen oxides (NO x), was signed in 1988, also without full participation. A fourth protocol on volatile organic compounds (which are precursors to the formation of tropospheric ozone, a health hazard) was signed in 1991 but is not yet in force. In parallel with LRTAP activities, the European Community (EC) has issued directives to control some sources of acid-causing pollutants within EC countries (25; 27, parts III and IV).

Compliance with LRTAP and its protocols has been quite high, at least among industrialized countries; many countries that signed the sulfur protocol have substantially overcomplied, suggesting states would have made these reductions on their own. Indeed, the downward trend in sulfur emissions began in the early 1980s, before the sulfur protocol was negotiated. The pattern of signing the protocol only if the state was going to make the cuts anyway is evident in the NO x protocol as well (25). On the surface, this suggests that LRTAP convention and its protocols have not been effective in gaining emissions control beyond what would have happened anyway; however, the treaties may have helped to deal with free rider problems and probably provided a helpful public forum within which environmental nongovernmental organizations (NGOS) pressured governments to impose stricter emissions controls (24).

STRATOSPHERIC OZONE DEPLETION Concern that chlorofluorocarbons (CFCs) might deplete the ozone layer, causing skin cancer and other health and ecological effects, dates to 1974. Understanding of the problem changed significantly with detection of the Antarctic ozone “hole” in 1985 and subsequent studies to explain it. Despite these major changes, the hypothesized link between CFCs (and other halocarbons) and ozone depletion has been substantially confirmed (50).

In the 1970s the United States, Canada, Norway, and Sweden acted unilaterally to control some uses of CFCs. International efforts included monitoring, research, and assessment programs beginning in the middle 1970S. The Vienna Convention (1985) established a framework for subsequent protocols; the Montreal Protocol (1987), negotiated and signed shortly after the ozone hole was detected, committed signatories to cut the planned use of offending chemicals by half. Amendments and adjustments to that protocol, signed in 1990, call for a ban of ozone-depleting substances (with a few exceptions) by 2000 with an additional decade for developing countries (28, 29). Negotiations are under way to advance that schedule in light of recent scientific evidence showing observed ozone depletion at faster rates than previously predicted.

It is early to assess compliance and effectiveness of the Montreal Protocol. However, many industrialized countries may overcomply because the transition to CFC-alternatives is proving easier and less expensive than originally feared. Evidence of ozone depletion, support from most major CFC manufacturers for stricter regulation, and persistent pressure by environmental NGOs have already contributed to swifter and more stringent domestic regulation in industrialized and some developing countries.

Oceanic Cases

OIL POLLUTION AT SEA Although accidental oil spills have commanded more public attention, “normal” operational discharges of oil into the sea, primarily from washing tanks and discharging ballast water, are the largest source of human-caused marine oil pollution. Attempts to manage oil pollution date back to the 1920s, but had little effect until the combination of the environmental movement and several salient accidental spills–e.g.– Torrey Canyon (1967) and Santa Barbara blowout (1969)–highlighted the need for domestic and international action.

International efforts to control operational and accidental oil pollution have centered on the Intergovernmental Maritime Consultative Organization (IMCO), formed in 1958 (in 1981 “Consultative” was dropped, “Intergovernmental” became “International,” and IMCO became IMO). Through the late 1960s IMCO served as consultant on uniform international safety standards, some of which also helped to reduce oil pollution. Following the damage from the 1967 Torrey Canyon accident, IMCO member states clairified the rights of coastal states to be compensated for accidental oil discharges. Subsequently, the 1973 Convention for the Prevention of Pollution from Ships (MARPOL), which employs an IMO body as its secretariat, set standards for operational discharges as well as for various measures designed to reduce accidental discharges. The original MARPOL never entered into force because of disputes over other provisions regarding transport of hazardous chemicals, but a modification in 1978 made the agreement more acceptable by separating and stretching out regulations on oil, hazardous substances, and other topics. Together these are known as MARPOL 73/78. Approximately 60 countries belong to MARPOL in some form.

IMO serves as a negotiating forum to amend and adjust safety and pollution standards; thus MARPOL 73/78 and related regulations are not static. IMO and MARPOL regulations take two forms, both implemented domestically. Operational regulations set guidelines for the conduct of tankers, for example by restricting the areas and rate at which oily ballast water is discharged into the ocean. Technological regulations prescribe equipment and designs that must be present on tankers of different sizes. Data on compliance with either form of regulation are not collected. Compliance with operational regulations can be assessed only by examining the self-reported records of ship captains; given the conflict of interest and general lack of independent monitoring, compliance may be far from perfect. Compliance with some technological regulations is nearly perfect, probably because the ease of detecting noncompliance and cost of retrofitting are both high (R. Nlitchell, personal communication; 33). In practice, as is frequently the case, a few large countries and firms are more active in the setting of standards than the whole; theses heavily influence the pace and direction for the international process of setting and enforcing common standards.

MEDITERRANEAN POLLUTION By the early 1970s, pollution of the Mediterranean, especially near industrial centers, had visibly increased, as had highly publicized egregious cases. The international response was a comprehensive plan to study and reduce Mediterranean pollution as a single ecosystem, rather than through a series of piecemeal agreements. Negotiated with strong leadership from the United Nations Environment Programme (UNEP), the 1975 Action Plan (Med Plan) seta forth the comprehensive approach (34). The legal instruments began the following year with the 1976 Barcelona Convention and two protocols calling for prevention (and, for some substances and cases, banning) of marine dumping and cooperation to reduce oil pollution. UNEP subsequently made the Med Plan a model for integrated pollution control in other regional seas (51); however, in most other applications the Med Plan model has, for a variety of reasons, not worked well (36). A notable case where the Med Plan model has not been used is the North Sea; although initially ineffective, there are recent signs the North Sea regime is becoming more effective (10, 52-54).

The main feature of the Med Plan as its system of coordinated monitoring and research (Med Pol), which has improved general understanding of the problem and has transferred knowledge, skills, and technology to developing countries in the Mediterranean. Some argue that these scientific activities have built networks of concerned researchers that, in turn, have effectively pressured governments to take substantive measures to reduce Mediterranean pollution (35). The most important substantive agreement is the land-sources protocol (1980) because such sources are, by far, the most important contributors to Mediterranean marine pollution. Although that protocol entered into force in 1983, it is early to determine how effective it has been or the general level of compliance. Implementation depends on standards still to be developed by the Med Plan’s scientific research programs. An additional protocol on specially protected areas was signed in 1982 and entered into force in 1986.

There was been a great deal of activity, for example, the construction of sewage treatment plants, suggesting compliance and effectiveness. But, it is unclear how much be can assigned to the Med Plan process and how much to domestic actions that would have proceeded anyway.

Management and Preservation of Natural Resources

Management characterizes the main objective of many fisheries agreements, of which we consider one, the North Sea herring. Preservation characterizes the protection of endangered species and the Antarctic. The whaling agreement began as a management issue and has gradually shifted to preservation.

We do not consider the several agreements on transport and disposal of hazardous waste, although they are related to preservation of natural resources. These include the 1989 Basel Convention on Transboundary Movements of Hazardous Wastes and Their Disposal (55) and the 1972 London Dumping Convention on disposal of wastes at sea (56, 57).

WHALING From the end of the 19th century through the middle 1960s the annual harvest of whales grew dramatically, peaking in the 1930s and again in the 1950s; consequently, the population of blue whales, for example, dropped from a quarter million to the tens of thousands. In the 1940s, overwhaling in traditional areas of the North Atlantic and Pacific, coupled to technological improvements, pushed the industry from the North Atlantic and Pacific to the Antarctic, which rapidly became the largest source of whales. Overwhaling has long been evident, but the several pre-World War II attempts to manage the population failed (37). Using the many existing and previous agreements to manage fish and seal populations as a guide, in 1946 the whaling nations established an International Whaling Commission (IWC), as a negotiating forum for management of whale stocks. The IWC meets annually to discuss the state of stocks, to set quotas and other regulations, and to review how well the past season’s quotas and regulations were obeyed. Its Scientific Committee has warned, fairly accurately, of overwhaling problems; through the middle 1960s those warnings were only partially heeded in the quota and regulation-setting process (i.e. the quotas were set too high; 38). The Scientific Committee sponsors some research of its own but also relies heavily on outside sources, for example national reports on the annual whale catch and the International Council for the Exploration of the Sea (ICES, see below discussion of North Sea herring fishery).

The original rationale for the IWC was to maximize the economic benefit of whaling by reducing overfishing and, eventually, increasing total catch. In the early 1970s that rationale changed towards preservation of whales; at the 1972 U.N. Conference on the Human Environment (Stockholm), the preservationist ethic was reflected, for example, in a “whale parade” and a call, led by the US delegation, for a 10-year moratorium on whaling. Domestic pressure in many European nations and the United States to stop whaling was also strong. From that time, annual meetings reflect the shift away from economic management towards preservation (37, 38). There were also changes in membership as nonwhaling nations joined the IWC in the late 1970s and early 1980s to form a voting bloc; with this new membership the IWC approved a moratorium, beginning in 1986, that continues to the present. Whereas through the 1960s a major problem had been that quotas were set in excess of the scientific committee’s recommendations, the moratorium set quotas below what was probably justified by the IWC’s scientific assessment (41a). Some whaling nations (Japan, Norway, and the Soviet Union) entered objections to the ban, while others (e.g. Iceland) shifted to “scientific” whaling; through both these mechanisms, some whaling continues, and IWC has no formal authority to prevent such whaling. Through public opinion, NGOs continue pressure to stop all forms of whaling; some countries have assisted these efforts with threats of retaliation against whaling nations (58a).

Overall, compliance with IWC quotas seems to have been high. 2 The IWC meetings regularly address enforcement and compliance; national reports indicate that the number of infractions was perhaps one to two percent of the total catch (37). Not all nations submitted reports, and there have been numerous third-party reports and indirect evidence (e.g. anomalously low populations of certain whales) of noncompliance, including a dozen notable cases. In 1955 Norway first proposed an International Observer System (IOS) of independent observers to be stationed on whaling ships and factories to verify compliance. It was not until 1972 that IOS was put into action, and since then compliance has probably gone up (37). However, there are indications that compliance was already rising as the whaling fleets of persistent violators were purchased by the major whaling states.

Some claim that because the moratorium fails IWC’s original goal of commercial management of whaling, IWC effectiveness is low (10). Others suggest that because whaling has declined markedly in the past two decades, in part because of IWC decisions, the whaling regime has been effective (11). Future effectiveness is unclear because Iceland, a major potential whaling nation, has announced it will withdraw from the IWC.

ANTARCTIC TREATY SYSTEM Systematic exploration and territorial claims on Antarctica extend bark to the turn of the century. After World War II those claims expanded and threatened to militarize the continent. Antarctic research figured prominently in the 1957/58 International Geophysical Ym (IGY), the highly successful 18-month internationally coordinated scientific probing of the Earth. The 1959 Antarctic Treaty, negotiated with US and USSR leadership, calls for the continued absence of military activities, the suspension of all territorial claims, and the coordination of “peaceful” scientific research on the continent Membership in the treaty has remained small, a few dozen countries, because a prerequisite is serious interest in Antarctic research, typically demonstrated by maintenance of a year-round scientific base. In addition to the 1959 treaty, the parties have negotiated agreements to control seals (1972) and Antarctic marine living resources (1980), especially the rich fisheries (59, 60). The suite of treaties is known as the Antarctic Treaty System (ATS). A 30th anniversary review of the ATS produced a ban, signed in 1991, on mineral exploration for at least 50 years.

Parties to the treaty meet every two years to make decisions and interpret the provisions of the treaty; thus the ATS evolves over time (42, 44). Because the Antarctic Treaty manages both the continent and its surrounding oceans, it overlaps with efforts in other areas, for example the Law of the Sea, the whaling regime, and agreements controlling transport and dumping in the ocean (e.g. the 1989 Basel Convention on the Control of Tran boundary Movements of Hazardous Wastes and Their Disposal which, among other controls, prohibits disposal of hazardous waste south of 60 S latitude).

The verification provisions of the ATS are unique in allowing anytime/anywhere inspection, including over flight, by any of the parties, and requiring advance notice of all expeditions. In practice, only the United States has regularly conducted such inspections, and only to underscore the international status of the continent (42) and to establish the precedent of intrusive inspections, which the Soviet Union had not accepted in the 1960s when the United States first conducted its Antarctic inspections. Although it is difficult to assess, compliance seems perfect, except that the treaty calls for coordination of scientific research that seems the exception rather Um rule. The Scientific Committee for Antarctic Research (SCAR) of the International Council of Scientific Unions (ICSU) helps integrate scientific research programs, but final authority for essentially all Antarctic research rests with national governments who provide the funding, as is normal and was the case even for the IGY.

ENDANGERED SPECIES As with many issues of environmental preservation, extinction of species became an important issue with the 1960s environmental movement. Domestically many countries passed laws to protect species, primarily popular land mammals, and their habitats. The 1972 Stockholm conference reinforced these concerns at the international level. The main international legal instrument to control extinctions has been the 1973 Convention on International Trade in Endangered Species (CITES), negotiated with US leadership and pressure from environmental groups. We focus on CITES, although controlling loss of species involves other agreements, including whaling and others (39).

Although the CITES goal is to preserve species, the mechanism is limited to controlling international trade in those species. CITES distinguishes among species according to their risk of extinction by listing species in two appendices: the first, of endangered species, for which commercial trade is essentially banned; and the second, of threatened species, for which commercial trade is closely controlled. Because decisions on listing are made by majority voting of the parties, there is also a third appendix in which a country ran unilaterally place a species to notify the international community that the country considers that species to be in need of international controls. The competence with which the trade restrictions are implemented varies widely by country and species.

The International Union for the Conservation of Nature (IUCN), 3 a quasi-governmental organization, has adopted endangered species as one of its issues and, since the 1960s, has been the leading international authority on the status of various species, publicizing its findings through its annual “red book.” In an unusual arrangement, IUCN also provides secretariat services to CITES on contract from UNEP; in that capacity IUCN performs and contracts a limited amount of research, data collection, and technical assistance related to formulating and implementing CITES regulations (45).

Losses of biodiversity surely continue, though the magnitude and distribution of species loss are uncertain. The most important levers on species decline are domestic actions to preserve species and their habitats, which are outside the realm of CITES. Thus, the regime is unable to stop extinctions directly. Parties to the Convention are required to send annual reports, including trade records, to the secretariat but assessing compliance requires some estimate of how many international shipments circumvent the system, which appears impossible to determine. Some reports suggest that even in the United States, which has among the strictest domestic implementation of CITES, compliance is low. Both because CITES is implemented poorly in many countries and because the agreement controls only international trade, its effectiveness in stopping extinctions is probably low (46). However, for many species and in many countries, there is evidence of more stringent local regulations than would be the case if CITES were not in existence.

FISHERIES MANAGEMENT The management of fisheries for maximum sustainable yield (MSY) is the apotheosis of international management of natural resources. There have been many fisheries agreements, but most have been ineffective in stopping overfishing, although it appears that effectiveness has improved since the 1970s in many cases (61). We focus on the North Sea herring fishery because it has received the most attention and may be the single most important of the fishery arrangements.

Until the middle 1970s the catch of herring was the most abundant of an the North Sea fishes, but extensive overfishing caused yields to drop until 1977, when the fishery was closed for five years to allow recovery. The fishery has evoked a variety of institutional responses. From the late 1950s it was controlled by the Northern Atlantic Fisheries Convention and its Commission (NEAFC), but they acted only as advisory bodies and had little practical impact on overfishing (48). The extension of exclusive economic zones (EEZs)–the area in which a nation has exclusive control over economic activity–in the 1970s to 200 miles effectively divided the North Sea among Norway and the EC member states, at which point control was removed from the NEAFC to more flexible bilateral negotiations between Norway and the EC (47). Negotiations have remained cumbersome because of disputes within the EC, which was both negotiating a common fisheries policy and expanding in membership at the time the EEZs were extending outward (62).

Since 1974 the principle of total allowable catch (TAC), a quantity based on assessments of MSY and the current status of the fishery, has been accepted as the means of controlling the fishery. Before the ban, the agreed quotas markedly “ceeded TAC; furthermore, compliance even with those agreed quotas has been low. It has not been difficult to detect noncompliance since statistics on the catch have been collected and disseminated since early in the century by ICES, an organization explicitly established to improve the data on fisheries (37).

It appears that little has changed as a result of the ban. Overall, compliance with the ban, at least initially, may have been high and, generally, the stocks have recovered, though not to levels that allow MSY. In the last years of the ban there may have been considerable fishing in banned areas, but reported as catches from unbanned areas of the North Sea. In the period since the ban effectively ended in 1982, agreed quotas have exceeded recommended TACS, and disputes over dividing the quotas have resulted in fishing at levels even above the agreed quotas. An accepted formula for distributing the quotas may help reduce these controversies (47a).

FUNCTIONS AND CONCEPTS

Here we describe issues that arise when comparing agreements and illustrate them with examples that extend the brief description of each agreement already provided. The discussion is divided into the two main functions: monitoring and verification.

Monitoring

“Monitoring” here means the process of acquiring information used to facilitate decision-making and implementation of an agreement. Three types of information are collected: finite about offending behaviors that lead to the problem, for example the catching of fish; second, about the problem itself, for example trends in the stocks of fish; third, about responses to the problem, for example to what degree particular governments enforce fishing quotas. These different types of monitoring are used to different degrees in each of the cases. We illustrate by discussing five dimensions of the process of monitoring. The three by five matrix is shown in Figure 1; the discussion below fills in the boxes by moving left to right, top to bottom.

MEASURABILITY The offending behavior that can be measured affects the agreements that are negotiated and the extent to which they are implemented. The whaling and fisheries agreements have logically attempted to set quotas of allowable annual catch because such data were easily collected and comparison with some standard relatively straightforward. In the oil pollution case, the contrast between operational and technological standards further illustrates the point: technological standards are easy to monitor, for example by demonstrating the presence of a particular device onboard the ship; operational requirements are difficult to monitor because they require observing the ship in diverse settings and over extended periods. To improve measurability (and increase stringency), IMCO changed the definition of an illegal oil discharge from 100 parts per million to the “clean ballast” standard (30). Under the new definition, noncompliance with “clean ballast” could be shown by aerial photograph, rather than in situ measurement. In practice this has proved complicated because additional in situ data are needed to demonstrate that an oil slick was the fault of a particular ship.

Regarding monitoring of the problem itself, lack of measurability is pervasive. Statistics on fish populations are notoriously inaccurate; the same is true for whales, though to a lesser degree because they live on the surface and are large. Improving the capacity to measure the relevant environmental parameters has been an explicit goal of both the Med Plan (through Med Pol; 35) and LRTAP (through EMEP; 24). In both cases the approach has been twofold: to fill gaps in the scientific research programs necessary for conducting the measurements; and to adopt uniform monitoring practices so that data and results are comparable.

Figure 1. Types and dimensions of monitoring

Measurability of responses to these problems is occasionally an issue; though most international environmental agreements do not formally require monitoring of how the actions called for are implemented domestically, frequently the parties are required to self-report on the process of implementation. The issue does arise at the periodic meetings of the parties, usually in the context of debates over compliance. The question is rarely one of monitoring whether or not the agreement has been implemented but, rather, whether implementation has been sufficient.

DIRECT AND INDIRECT INDICATORS Problems with direct measurability lead to the use of indirect indicators. In the case of monitoring behavior, most agreements to control atmospheric emissions make extensive use of indirect indicators because the technology for measuring gaseous emissions accurately is expensive, especially for diffuse nonpoint sources. Sulfur dioxide emissions in Europe, which are used to assess LRTAP compliance, are computed from the sulfur content of feedstock coals and unburned ash, except in cases where emissions-monitoring devices are instaued in the stacks and thus emissions can be monitored quasi-continuously. The Montreal Protocol controls “consumption” of CFCs, which is defuied in the Protocol as: production + imports – exports. The goal of the Protocol is to control atmospheric release of CFCs, but that would have been too complicated to measure in practice, so consumption was agreed upon as a reasonable indirect measure. Indirect data on polluting behavior, for example, emissions of acid-causing substances, can also be gained by working backwards. With the EMEP monitoring network, data on emissions from other countries, data on air currents, and numerical models, it is possible to deduce the gross emissions from a particular country. EMEP’s capabilities are unusual for international environmental regimes (23). There are several cases in the IWC history when inconsistency between data on whale stocks and self-reported data on whale Catches produced suspicions of noncompliance, for example, anomalously low data on humpback populations. In the ozone case, for large countries, it may be possible to determine gross compliance of large producers and consumers of CFCs with the Monural Protocol from atmospheric monitoring, data on other countries’ emissions, and atmospheric models.

Indirect measures are also frequently used to monitor a problem. Oil pollution catastrophes–used as an implicit measure by the public–have been instrumental in pushing adoption of IMCO/IMO and MARPOL regulations. Similarly, residents of Mediterranean states easily detect dead fish and smelly water. Visible dieback of German forests served as an indicator that helped convince that country to push for controls on emissions of acid-causing substances. Because data on fish stocks are poor, the catch of fish is frequently used as an indirect indicator of the stock: the declining herring catch helped to force the United Kingdom to close the fishery in 1977; the disastrous catch of the 1964-1965 whaling season helped to galvanize whaling nations to seek more rational management of the resource.

For long-term problems, indirect indicators of the problem may be all that is available, and extensive use of models, simulation, and forecasts may be needed to identify needed policy changes in a timely fashion. The London amendments and adjustments to the Monaral Protocol are partly based on computer models of the future problem, because it is impossible to measure such a problem direcgy until well after the needed actions must be taken.

Regarding direct and indirect indicators of implementation, IMO provides an example. MARPOL requires that members report all infractions and enforcement of the MARPOL regulations. As secretariat, IMO reports the number of infractions, fines, and other sanctions; these are, at best, only indirect indicators of compliance and implementation. The same has been true in the whaling agreement, except that since 1972 there have also been the IOS reports, which are a direct measure of whether selected ships and factories obey the IWC regulations.

SELF-REPORTING The most extensive source of monitoring information for all these agreements is self-reporting. The Montreal Protocol is entirely dependent upon national reports of production, imports, and exports of ozone-depleting substances. Five years after the Protocol was signed, these basic data are still missing for some countries. Much is dependent upon these data; for example, the classification of developing country-and thus eligibility for a 10-year delay in compliance with the Protocol-is computed from self-reported data. Both the herring fishery and whaling cases show a different form of self-reporting: in those cases, the industry has provided the most useful data sets. The Bureau of International Whaling Statistics, established by the industry and the Norwegian government in the 1920s, provides the essential data on commercial whaling. The International Council for the Exploration of the Sea, using industry reports of annual catch, provides the data for the history of the herring fishery. In all these cases, it is unclear to what degree self-reported data are accurate.

National reporting is also a central component of monitoring the problem. Typically the secretariat for international agreements is small and has neither the funding nor capacity to conduct its own research; the few exceptions include the IWC and the IUCN (for the whaling and CITES cases, respectively), which are able to support a very limited amount of research related to monitoring. Because of limited international research capacity, national research programs, often conducted apart from the international agreement to control the problem, are usually the most important source of information. Consequently, most international environmental agreements include an under- standing that relevant national research results will be shared. Essentially every international environmental problem that has been “identified” by some scientific research program–the depletion of stratospheric ozone is the most notable–owes its origin to a few national research programs and free dissemination of the results.

Finally, national reporting of information about implementation is the norm in those cases where such data are required (17, 19). Whaling, CITES, LRTAP, and MARPOL all have mandatory self-reporting of issues related to domestic implementation of the international agreement, for example the number and amount of fines levied against violators. However, the quality of reports varies; for example, whaling reports have been notoriously late and incomplete, and similar experience exists with many other agreements (19). In addition to formal reporting, a number of agreements are characterized by a great many informal sources of reporting about government implementation. Nongovernmental organizations (NGOs) are playing a larger role in such reporting, at least in a few of these cases. At IWC and Montreal Protocol meetings NGO observers usually outnumber the member states, and they make available detailed critical analyses of national responses. The biennial statistical anthology World Resources published by an NGO, the World Resources Institute, in cooperation with U.N. agencies, spotlights shortcomings of policy responses on a range of problems. Nonetheless, NGOs may be most effective by their direct communication with the public and creation of political pressure rather than through infon-ning the formal processes of treaty negotiation.

INTRUSIVENESS In most cases where national reporting is the norm, intrusiveness is obviously low. However, there is varied experience with intrusive monitoring; carefully considering those cases is important because some observers claim that intrusive monitoring is a prerequisite for effective international governance.

From these nine cases there are two examples of intrusive monitoring of behavior. First, the IWC’s International Observer System (IOS) requiring whaling ships to allow impartial observers to monitor the killing of whales was in response both to claims that the whaling ships and nations whose flag they fly were inaccurately reporting data, and to claims that banned or more stringently controlled species were being killed and processed at sea, then mislabelled before the ship returned to port. The IOS seems to have rectified that problem, though it is unclear if high compliance on IOS-attended ships and factories is an accurate indicator of compliance at non-IOS facilities as well. IOS is not fully intrusive because it is based on bilateral exchanges of observers, and the observers tend to be exchanged between whaling nations and thus may be more lenient than would be the case if nonwhaling nations were, extensively involved in the IOS. The second case of intrusive monitoring is the anytime/anywhere inspection system of the Antarctic Treaty. In both cases, compliance may have increased slightly as a result of having intrusive inspections available. Intrusiveness may serve goals other than higher compliance; as noted earlier, the United States conducts Antarctic inspections primarily to reaffmn the principle of nonownership of the continent and to establish a precedent for intrusive inspections.

In monitoring the problem, intrusiveness has not been a significant issue. Because of cost, little monitoring of the problem is sponsored directly by the international organization. In those cases in which international monitoring of the problem has taken place–EMEP, Med Pol, and to a much lesser degree IWC and CITES—the sanction of the international collaborative effort seems to reduce fears of intrusiveness. Furthermore, in most cases, the international monitoring is carried out by local officials. Yet, because of the large role of science in all cases, in some sense there is a lot of intrusive monitoring. International scientific research on environmental topics is highly intrusive by nature, because scientists and their instruments travel around the world, subject partly to governmental prerogative.

In the monitoring of policy responses, many transnational actors, notably NGOs, in effect act as intrusive monitors. In none of these cases is this function formally established in the international environmental agreement, but it is carried out nonetheless.

ORGANIZATION Finally, monitoring activities vary in the organizational arrangements for carrying them out. Regarding monitoring of behavior, where self-reporting is the norm, the suite of organizational arrangements is dependent upon the prerogatives of the state. One of the major obstacles in several cases, notably LRTAP, was the absence and/or incompatibility of national emissions statistics because of widely different domestic capacities to collect and report data needed for the international regime. None of the cases that uses national reporting has a perfect record; often countries do not repom falsify reports, or submit incomplete or poor-quality reports (19). Much of this stems from the lack of domestic organizational capacity to prepare such reports. Some such misbehavior is intentional; in the 1960s Panama did not submit whaling catch reports to the IWC, even though it could have, because the only Panamanian whaling ship was engaged in egregious violation of the quotas. National data collection and reporting are not the only source of information. The Bureau of Whaling Statistics and the ICES, as noted above, are primary data sources for the whaling and fishery agreements and are supported not only by member nations but also by industry. In only one case, the IWC’s International Observer System, was there a new organizational capacity explicitly established to assess the veracity of self-reporting, and in that case the program was very small and funded on a bilateral basis by the parties.

In almost every case, the organizational arrangements for monitoring the problem are informal and diverse. Insofar as scientific information is critical for such monitoring, the existing national scientific research programs–which are frequently not organized or funded for the explicit purpose of providing information to the regime–are the most important sources of information. Frequently the regime supports some applied monitoring research; for example, as secretariat for CITES, IUCN provides some grants for monitoring stocks of species; the IWC supports similar types of research. Yet this research remains highly limited, primarily because of cost and lack of resources. Funding in the examples just cited is on the order of tens of thousands of dollars annually. In a few cases international funding commitments have been greater, and organizations have been established to improve such monitoring. The EMEP program under LRTAP and the Med Pol program under the Med Plan are two cases in which the regime explicitly empowered the organization to provide the primary source of monitoring information on the problem.

Regarding the organizational aspects of monitoring policy responses, in none of these cases is an organization formally empowered to collect information on policies. In those few cases where there is some formal reporting of national policies (whaling, MARPOL, LRTAP), the process is through national self-reporting. In most cases the secretariat collates and assembles national reports but provides little or no analysis of how those reports individually or collectively contribute to the goals of the regime. Thus, the organizational arrangements for such reporting are left to the member nation’s prerogative. Indeed, the extent to which nations actually submit the required reports depends highly upon the domestic organizational and technical capacity to collect and publish the needed information (19).

Actual functions and influence of organizations differ from the formal arrangements within the regime. For example, though national reporting of policies is frequently not a formal part of international environmental regimes (and even when it is there is flagrant nonreporting), the information nonetheless makes its way into the debates and actions of the regime. Independent of whatever formal arrangements exist, nations monitor each other in their implementation of international commitments, and independent groups such as environmental NGOs frequently monitor everyone. 5

Formally established organizations might have greater legitimacy with governments than informal networks, and legitimacy might lead to greater influence. However, the relationship between legitimacy and influence is far from clear. For example, EMEP’s legitimacy has been high, but so has the quality of its work; this combination makes EMEP results influential. IWC’s Scientific Committee has always been the most legitimate scientific body for the international whaling regime, but in the 1960s the quality of its work was low and its influence consequently diminished. IWC rectified that by establishing another small scientific advisory body, under the auspices of the Food and Agriculture Organization, whose work was influential because it was seen as unbiased, even though its legitimacy as an IWC body was lower than the formally established scientific commission. IUCN has long had considerable influence on the CITES process because of its “red books,” even though IUCN’s legitimacy has been problematic for some CITES members because it is not a strictly governmental organization. In the ozone case, it appears that scientific results were given greater legitimacy through an international scientific review process sponsored by the World Meteorological Organization and the United Nations Environment Programme, even though the bulk of the work had been done by scientists in a very few industrialized countries (50, 28).

Verification

Monitoring activities do not necessarily reveal when parties are in compliance. Verification, the process of determining whether a party is in compliance, varies across three dimensions: capability to verify, definition of compliance, and organizational arrangements.

CAPACITY TO VERIFY: NATURE OF THE STANDARD Many agreements are easy to verify, sometimes reflecting that the agreement was tailored to the prospects of verification. Easily verified agreements are characterized by a close match between the standard against which compliance is assessed and the information on behavior produced by monitoring. Fisheries agreements are of this vnn because the regulations tend to be simple (e.g. a quota or a technological standard such as minimum mesh size) and there is a lot of self-reported data. When the standard is indeterminate, verifying compliance is more difficult. The population dynamics of fisheries are typically not well understood or documented. Thus, determining what the. standard or quota should be is frequently difficult. The agreement to reduce land-based sources of Mediterranean pollution essentially calls for each country to do its best; thus there is no objective standard for determining compliance. Under CITES, there are only general standards against which it might be determined if local authorities have properly implemented the agreement; only in egregious cases is it clear that CITES obligations have been violated.

Improved capability to verify need not produce a more effective agreement. In the case of the herring fishery, compliance was low even though it was easy to determine noncompliance. With CITES, even though some forms of compliance are difficult to assess, many countries probably would not have joined the agreement if the standards had been more objective.

DEFINING COMPLIANCE: STRINGENCY OF THE STANDARD Although it is difficult to test the veracity of self-reported data, it seems that compliance with the nine agreements is fairly high. However, much of this may be an artifact of the standards. In the late 1950s, Norway and the Netherlands withdrew from the IWC in a dispute over quota-setting; they rejoined in the early 1960s when quotas were raised. Compliance remained high throughout the period; indeed, IWC quotas usually exceeded the actual catch. If Iceland leaves the IWC in the future, as seems likely, then compliance may remain high although significant whaling continues outside the regime. It appears that both LRTAP and the Montreal Protocol have similar levels of over compliance, but the former has done less to control the environmental problem than the latter. Thus verifying compliance is not the same as determining whether or not a particular party or the agreement as a whole has been effective.

The process of distinguishing compliance from noncompliance depends not only on how stringent the standards are set but also on how the problem is defined. Through the 1960s the IWC thought of the whale problem largely in aggregate terms, and thus set quotas in blue whale units (BWUs)–catches of different whales were converted into a single number according to an index. Compliance largely depended upon whether a particular nation’s catch in BWUs exceeded the quota, also expressed in BWUs. The main effect of changing to New Management Procedures in the early 1970s was to abandon the BWU and, instead, set quotas for individual species and individual parts of the ocean. Increased sophistication of whaling standards better protected the whales, but also required new and more extensive monitoring information both on the behavior of whalers and on the nature of the over whaling problem.

ORGANIZATON In most environmental cases there is a minimal role for the international organization in verification of compliance. Most agreements have secretariats and require some form of exchange of information such as national reports that can be used to assess compliance. Where the international organization sponsors some monitoring–LRTAP, the Med Plan, and to a lesser degree the IWC and CITES—there is some independent capacity to determine compliance. In practice, even when the international organization actively collects information on domestic implementation of the international agreement, it plays little formal role in explicitly identifying parties that are out of compliance. However, the process of collecting and disseminating the data probably makes it possible for other organizations, such as other signatories to the agreement or NGOs, to expose noncompliance. In some cases–notably IUCN under CITES, and UNEP under the Montreal Protocol and the Med Plan–the international organization has played an important informal role in identifying actual or potential noncompliance and exerting effective pressure.

Conclusions

Monitoring and verification have not been salient aspects of most international environmental issues. No large organizational infrastructures have been created at either the international or domestic levels to fulfill these functions. Most formal information collection under the regimes is self-reported by existing domestic organizations, although NGOs and other actors oversee and contribute to the effectiveness of the regimes to some extent. Thus, although compliance with the agreements seems to be high, the heavy reliance on national reports-which are incomplete, and may be inaccurate because of conflicts-of-interest–inakes true assessment of compliance difficult. Moreover, levels of compliance depend critically on the nature and stringency of the standard. Thus it is important to consider not only compliance but also whether standards are set at appropriate levels. Because international organizations have neither the power nor the capacity to monitor and enforce standards, we tentatively suggest that the most effective standards are those that allow for unilateral action, whether by parties to the agreement or by other actors such as NGOs.

DOMESTIC EXPERIENCE

Many of the same issues and concepts arise in the domestic context, where verification and compliance have been analyzed more extensively (63, 64). Nearly all of the theoretical work on economically optimal systems of verification has been done with the domestic context in mind. Domestic cases may be easier to study because they lack the complication of inherently weak international decision-making and enforcement.

EMPIRICAL STUDIES In the United States, responsibility for environmental protection is divided between the federal government (primarily the Environmental Protection Agency, EPA) and state governments. For example, to control urban air pollution the EPA sets standards for allowable ambient concentrations of several pollutants (the National Ambient Air Quality Standards, NAAQS); the states and some localities are responsible for implementing regulations locally so that, by certain dates, emissions of pollutants are controlled and the NAAQS are met (65, 66). In addition, there are federal emissions standards for new pollution sources. 6 Most enforcement (i.e. inspecting of sources and imposing of sanctions) is done by state authorities, but some 10% is done by EPA. The result is that the states and occasionally EPA monitor individual pollution sources for compliance, both the states and EPA monitor for compliance with ambient air concentrations, and EPA monitors the progress of states in implementing their air pollution control plans. The verification regime telescopes from individual sources up to the EPA.

Studies of state monitoring of individual pollution sources suggest that state authorities vary widely in competence but that generauy their inspections of polluters are too infrequent and cursory (63, 68, 69). Harrington’s (70) study of New Mexico showed that state authorities adopt fairly effective rules of thumb–for example, to inspect large polluters and frequent violators more often-so data on inadequate inspection may understate the efficacy of the inspections that are performed. Other case studies fmd much the same. Inspections frequently consist of spot checks to gauge the consistency of self-reported data on emissions, thus encountering the obvious problems of veracity with such data. Technological innovation may soon improve the prospects for monitoring, since continuous emissions monitoring systems (CEMS) are being installed on sources, making it much easier (and less expensive for government) to gain a continuous, tamper-proof record of actual emissions to the environment.

Studies of enforcement find much the same. Regulators are usually unwilling to levy large fines or other sanctions because these lead to expensive legal challenges and delays; the courts have also assessed only modest sanctions (66). There is some evidence of a trend towards stiffer sanctions, including jail terms; since 1983, EPA referrals of cases for criminal prosecution have increased significantly (71). Studies of EPA monitoring of overall compliance with the NAAQS show marked improvement for most pollutants since 1970 (72). The record is mixed for more difficult pollutants, notably tropospheric ozone in growing population centers such as southern California. EPA also monitors state implementation plans and the progress of such plans in achieving compliance with the NAAQS. In cases of continuing noncompliance EPA can intervene to enforce the federal standards and, for example, limit the siting of new pollution sources. In practice, EPA engages in a continuous renegotiation with state and local authorities rather than exercising its full power and autonomy. Thus, as with the international case, the term “compliance” has many meanings and is a function of the standard-setting process.

There have been similar studies of verification and enforcement for other issues, for example hazardous waste (73) and water pollution (64, 74). For comparison, the air pollution case described above is situated between two endpoints. At one extreme is inspection and enforcement of workplace health and safety regulations by the Occupational Safety and Health Administration (OSHA), which is very infrequent, one inspection per century per firm. Consequently, compliance and effectiveness of OSHA regulations may be much lower than if enforcement were higher (75). At the other extreme is EPA enforcement of water pollution regulations. This is regular–about once per year per firm–and thorough, and seems to increase compliance significantly and cost-effectively (64). The experience with enforcement of air pollution laws is closer to the successful enforcement of water pollution laws than the largely unsuccessful OSHA enforcement. Because of pervasive problems of measuring benefits of environmental regulations and enforcement, it is unclear what the optimal level of enforcement would be in these varied cases. Ostrom’s empirical study of management of local commons also finds that graduated enforcement supported by monitoring of behavior and compliance, contributes to effective management of natural resources, although she is unable to assess the exact relationship between enforcement and effectiveness (13).

A commonly asserted difference between international and domestic pollution control is that the former faces problems of sovereignty and thus cannot be intrusive. Domestic cases have also had to confront intrusiveness because the fourth amendment to the US constitution prohibits “unreasonable searches and seizures.” The courts have addressed this by reinterpreting the amendment so that it does not apply to neutral (i.e. unbiased) searches by administrative agencies, for example to enforce housing codes for the general good of the public (76, 77). This finding has been extended to include inspections for enforcement of air pollution laws (78), OSHA inspections, and many other similar cases.

THEORETICAL STUDIES In addition to empirical studies of domestic enforcement of pollution laws, there have been many theoretical contributions, largely by economists. Much of this can be traced to the work of Becker (79) and Stigler (80) on optimum enforcement of laws and the deterrent value of various sanctions such as fines and imprisonment. These have been extended to the case of environmental pollution by Downing & Watson (81) and Storey & McCabe (82). This research has become progressively more realistic to reflect the imperfect enforcement of pollution laws (83, 84) and the fact that pollution monitoring is stochastic (85). Synthesizing this literature, Russell et al (63, 86) have proposed an approach to enforcement such that the frequency of inspection would depend upon the number of alleged past violations. As noted above, regulators already adopt similar rules of thumb (70, 73); it is unclear to what extent the rules of thumb and the practice of enforcement deviate from the theory except for the general conclusion, already stated, that pollution laws are probably underenforced.

This theoretical literature on domestic enforcement of environmental laws may be useful for designing better monitoring and enforcement at the international level. To date, there is little evidence that it has been applied in that context.

THEORETICAL PERSPECTIVES

How might theorists of international affairs explain the patterns of verification evident in international environmental agreements? From a survey of several promising fields, the answers are both brief and speculative, because only a handful of scholars have asked the question directly. To further illustrate the differences among the theoretical perspectives, we have explored how they explain the preoccupation with verification in arms control cases but relative lack of attention in the international environmental cases.

GAME THEORY International cooperation is inherently a process of interdependent decision-making among two or more actors: it is a “game” in the terminology of game theory (87). Economists and political scientists have made extensive use of game theory to describe the conditions under which cooperation can be achieved. The process of thinking systematically about the costs and benefits or “payoffs” from cooperation has proved helpful (88-90), but it must be remembered that game-theoretic analyses are abstract and thus unable to describe fully the processes of bargaining and cooperation.

Figure 2. Structure of payoffs using game theory

One explanation of the difference in demand for verification between arms control and environmental protection is the structure of the “game” in the two issue-areas (Figure 2). From the perspective of nation A, arms control agreements are typified by the extreme need to avoid the case where A complies but B breaks the agreement. The demand for verification is high in those cases because there is a premium on identifying when the opponent defects. In contrast, environmental agreements may be less sharply characterized by such a payoff structure and thus the demand for verification is lower (91). Also, the emphasis in arms control verification upon “timely notice” of a violation reflects that the benefits of defecting without detection can be rapidly realized, whereas for environmental problems, which may be more cumulative, it may take longer for changes in behavior (e.g. from cooperation to defection) to result in changes to the payoffs.

Thus, the theory seems to predict successfully the differences between the arms control and environmental cases. Now we explore how well game theory can predict the differences in demand for verification among the nine environmental cases. Our nine cases span two ideal types of cooperation: coordination and collaboration (88, 89). Coordination games are characterized by the need for cooperation but the relative indifference of the parties to the particular agreement that is reached. Setting of common international standards for shipping (including many oil pollution standards) are of this type: the parties most want to avoid the case where cooperation fails and they face different shipping standards in every port. Coordination games are self-enforcing because behavior is not conditional on that of other parties and thus the incentives to defect are very low; thus these games should be accompanied by a low demand for verification. The other type of game is collaboration, where cooperation can achieve some common interest but there are significant incentives to defect. Both games in Figure 2 are collaboration; the top game is the famous prisoners’ dilemma. Collaboration games are not self-enforcing; thus these games should be accompanied by a high demand for verification so that each party can have confidence the other is not cheating. Tougher collaboration (more incentives to defect) should be accompanied by greater demand for verification.

These predictions are not met by the cases. Notably, the LTB is largely a game of coordination because US, Soviet, and UK nuclear programs did not appreciably suffer by moving underground, and the common problem of radiation in the atmosphere could only be averted if all parties moved underground. Yet the collective spending on verification procedures for the LTBT is probably greater than for the combined total of the other eight cases described in this paper, which reflects Cold War concern of Soviet cheating.

Rigorous testing of these predictions is difficult because the variable “demand for verification” and the payoffs of collaboration or coordination are difficult to define precisely. There are other complications as well. For example, fishery and whaling agreements had some built-in verification procedures before the agreement was first negotiated, such as the extensive self-reporting system provided by the ICES; thus marginal demand for verification in those cases might be depressed because much of the needed capacity already existed. Interestingly, the demand for verification in both the IWC and fisheries cases seems to be largely invariant with the level of compliance. Game theory would predict that as greater degrees of compliance are demanded and realized, the need for verification would increase because the risks of defection would increase as well.

Game-theoretic studies of international cooperation also underscore that games repeated over time lead to more successful cooperation than static games (92). This is true if compliance is transparent: willingness to collaborate more extensively and effectively will increase if the parties can be confident that all other parties have been adhering to past agreements. This suggests two related predictions: first, parties that want to improve cooperation over time will seek procedures for verification so that compliance is transparent. Second, in cases where compliance is transparent there should be an increase in confidence over time, accompanied by an increase in collaboration. Neither of these predictions is rigorously supported by the cases. In the case of the IWC’s international observer system, the original proposal was precisely to improve transparency of compliance. However, it took 18 years for IOS to be adopted; this suggests that the parties did not seek verification with much vigor. Regarding the second prediction, there is not much evidence that when IOS finally went into effect that it produced greater confidence and more extensive collaboration. The stringency of IWC regulations did increase from the early 1970s to the present, but not because of IOS. In the LRTAP case, transparency of compliance may have led parties not to join the substantive protocols, rather than to cooperate more extensively and risk noncompliance.

In sum, game theory would appear to offer general insights into the demand for verification, especially the difference between the arms control and environmental cases. But upon closer examination, game theory is insufficient to predict patterns of behavior in environment.

DOMESTIC POLITICS Negotiating international agreements is better understood as at least two interacting processes: one at the international level and the other among domestic actors (93). In the United States the domestic debate over arms control agreements was characterized by loud proclamations of distrust of Soviet intentions; critics have demanded that arms control agreements have stringent provisions for verifying compliance. Because these critics have also had domestic political power, their concerns have been reflected in the formal international agreements. In contrast, the cries for verification of international environmental agreements have been few and soft. In many cases, the leaders of the environmental movement have sought world peace and trust; it is not surprising that verification has not been their major preoccupation. However, there are some cases where domestic interest groups have successfully enforced international agreements and norms, for example through boycotts. Domestic groups were able to add to the 1976 Magnuson fisheries act in the United States a provision requiring retaliation in the form of denied fishing rights against any other state that weakened the effectiveness of CITES (58).

The literature linking domestic politics to international negotiation might be usefully combined with studies of bureaucratic organization and procedures (e.g. 94). It may be that the important bureaucratic actors in the domestic formation of arms control policies-primarily the military–are “stamped” with an ethos of mistrust that leads the organization to demand strict verification. In contrast, the important bureaucratic actors in cases of environmental protection–for example, the Environmental Protection Agency–may be characterized by a different ethos, one that is less suspicious and more confident that compliance can be achieved without much attention to verification. This may explain the puzzle from the previous section: namely, why was there so much demand for verification of the LTBT when it is probably a self-enforcing agreement? The answer may be that because LTBT is an arms control agreement, its verification procedures are shaped by the bureaucratic and interest groups that think all arms control agreements should be extensively verified.

REALISM Realist students of international affairs assume that the distribution of power among states determines their bargaining strength and international behavior. Realists that have studied international regimes doubt that the regimes affect the behavior of states much because the underlying determinants of regime outcomes are state power. However, most realist students of international regimes accept that while economic and power relationships may be instrumental in the formation of a regime, once created the regime might exercise some independent leverage on behavior (4, 95). Because the most powerful states matter most those states will undertake to verify and enforce these international agreements on their own, according to their own preferences, rather than entrusting the task to some international organization. There is much evidence that compliance in some cases–notably CITES (referred to above) and the IWC–has been substantially improved because of threats by the United States against noncompliant states (58).

POWER AND INTERDEPENDENCE Power has proved a difficult concept to apply to studies of international relations, and in matters of “low politics” such as harmonizing of tariffs it is not clear what utility military power has. Rather, different states and nonstate entities have different degrees of power, depending on the issue at hand. Australia, New Zealand, and France have played leading roles in renegotiating the Antarctic Treaty; the United States played a leading role in negotiating the Montreal Protocol. UNEP has played the leading role in developing measures to protect regional seas, and NGOs have considerable power to influence behavior and regime outcomes in some issues. Even entrepreneurial individuals have some power over the structure and effectiveness of international agreements; for example, the Executive Director of UNEP was instrumental in the Montreal Protocol negotiations and subsequent efforts to strengthen the Protocol (28).

So far little has been said about enforcement of international environmental agreements and its effect on the demand for verification. Because of growing interdependence of states and a sense of “community” among a relatively stable set of actors, there are strong incentives to comply with international agreements–even where it may not be in a state’s immediate interest to do so–because the negative consequences of noncompliance may be felt in other issues (96). Because issues are interlinked, states have a variety of mechanisms to enforce international regulations; for example, the United States made effective use of threats to deny Japanese access to fishing waters within the United States EEZ unless the Japanese withdrew their objection to the IWC’s whaling moratorium. Formal, dedicated verification and enforcement may not be needed where economic and political interdependencies can be used to ensure compliance through “diffuse reciprocity” extending over time and across other issues (97). Cases of “high” politics such as nuclear arms control, where territorial security is the issue, may be characterized by lower interdependence and thus lower assurance of compliance and, perhaps, greater need for verification.

SYMBOLIC POLITICS An alternative explanation is that verification tends to be low not because of an expectation that nations will comply but because of neglect. Governments may negotiate many of these agreements for symbolic reasons—for example, to demonstrate concern about the environment and placate environmentalists. Thus they are concerned primarily with the presence and image of the international agreement and do not actually seek a process for forging substantive cooperation. The demand for verification remains low because verification is not integral to the symbol. Demand also remains low because verification might reveal noncompliance.

INFORMAL ACTORS The practice of monitoring and verification is conducted through many channels, not just the states and organizations that are formally associated with an international agreement. For example, it is now commonplace to assert an important role for NGOs in implementing international agreements by collecting and publishing information related to compliance and by pressuring states to control pollution. In CITES, IUCN has partially filled this function; in the whaling and fishery agreement the partially nongovernmental ICES has contributed extensive amounts of information. At present however, the roles and effectiveness of NGOs remain understudied both at the national and international level (98).

NORMS AND SOCIAL INSTITUTIONS The large number and increasing frequency of environmental agreements may reflect a long-term trend towards some form of world governance or even government. Perhaps such international governance is already evident in the various principles, norms, and expectations–some informal and others formally codified in international agreements–that are shared internationally. Scholars have long noted the power of norms in shaping behavior (99, 100), although it has proved difficult to track accurately when and how such norms develop. Nonetheless, high degrees of compliance that seem to be experienced in most international and domestic cases may reflect the operation of such norms, rather than the fear of formal enforcement. Individual compliance with laws may reflect the widespread belief that it is “right” to obey the law. Governmental compliance with international agreements may reflect the same principle operating on the international level. Governments tend to obey international agreements, choosing to change the expected norms rather than blatantly violating them (101). The effective operation of norms may reduce the need for explicit monitoring and verification. Within established communities norms may be more effective in shaping behavior; in addition, intrusive and cooperative monitoring may be easier and less costly. Clearly the operation of even well-established norms is not guaranteed. For example, the Iraqi invasion of Kuwait in 1991 violated the well-established principle of sovereignty.

Norms can be powerful; the environmental movement shaped a norm against whaling which, from the late 1960s to the 1980s, transformed the IWC from an organization that manages whale stocks to one that preserves them (37). In cases where norms effectively control behavior, little or no verification and enforcement may be needed. This may explain why states have devoted little attention to verification of these international agreements.

EMERGING ISSUES AND RESEARCH OPPORTUNITIES

ISSUES FOR NEW REGIMES Negotiations are under way to frame environmental regimes for global warming, tropical forests, and biodiversity. Based on this review, at least four issues are worth attention by practitioners and scholars addressing these problems. The first is availability of data. Analyses of global warming are based on country-by-country estimates of sources and sinks of greenhouse gases, not direct measurement; for many countries’ sources and sinks, the estimates are poor. The rate of tropical deforestation is uncertain. Biodiversity is marked by sparse data on both number of species and rate of loss. New regimes should be based upon data that are reasonably available or likely to be so in the near future. Perhaps it is possible to build incentives into regimes to improve data collection and dissemination and to counter false and incomplete self-reporting. Regimes calling for changes in behavior that are finer than the accuracy of data will not encourage compliance or permit verification.

The second issue is transparency and openness. Many of the successful regimes reviewed in this paper provide for clear presentation of data collected under the regime (transparency) and access to the negotiating process and information for a wide range of governmental and nongovernmental actors (openness). The environmental successes contrast with the arms control cases, which are marked by secrecy, obscurity, and limited participation. New environmental regimes may also benefit from transparency and openness.

A third issue is the balance between authority vested in domestic and international organizations. There is tension between the appeal of internationalizing environmental regulation and verification–for example, through creation of a global version of a national Environmental Protection Agency–and the reality that most functions of environmental management are carried out domestically, even when they form a critical component of an international agreement. Because monitoring and verification are intrusive, expensive, and must be responsive to local conditions, the balance favors domestic institutions. International organizations can contribute to verification, for example, through audit strategies such as the International Observer System and research and monitoring, but domestic organizations remain the mainstay of implementation. New regimes should be tailored to the reality of the domestic institutions upon which they depend.

The fourth issue is the division of roles between governmental and nongovernmental organizations. Domestically, NGOs have been important for setting environmental norms and pointing out noncompliance, a pattern likely to be extended. As in human rights, where organizations such as Amnesty International and Helsinki Watch have pressured governments to comply, we imagine that perhaps a “carbon watch” will play an important role in greenhouse verification. Such contributions of NGOs to effective international environmental regimes are enhanced by transparency and openness (101). It is also important to recognize that contributions of NGOs to international environmental policy are frequently dominated by concerns of industrialized countries, often have a narrow or “single-issue” focus, and are sometimes unresponsive to scientific evidence.

CONCLUDING THOUGHTS Because many environmental problems are the result of energy consumption, international organizational arrangements for energy issues must be kept in mind. Within the U.N. system there is a program for energy statistics, but it has little analytical capability and the data are frequently poor. The International Atomic Energy Agency addresses an important subset of energy issues, namely nuclear power. In OECD countries the International Energy Agency plays a coordinating role in energy markets. However, at the global level there is no organization particularly suited to address the pervasive link between energy and environment Currently, UNEP de facto is the lead organization on these issues because of its role in environmental protection, but UNEP’s expertise is spread thin across many fields.

It is also important to consider how advances in science and technology can contribute to international environmental verification, especially in monitoring, organization, and dissemination of information. Regarding non-point sources, for example, new monitoring devices can allow verification of agreements that would otherwise be administratively infeasible. Information systems ran allow worldwide transparency. The rapidity, extent, and cost of technological change and its effect on verification regimes are worth closer attention. Some technologies centrally controlled by a few countries, such as satellites, may assist global data collection and should be employed where appropriate, for example in the measurement of rates of change and extent of forest cover. Furthermore, the release of technical capabilities devoted to national security may greatly improve public knowledge about environmental changes ranging from deforestation to extent of snow cover and ice thickness.

Finally, study is needed to determine how market-based mechanisms to control environmental problems, currently in vogue, affect notions of compliance and verification. These mechanisms are largely dependent upon domestic institutions for implementation, and there is large variance across domestic systems, for example, in tax policies. International arrangements can help harmonize disparate domestic situations, but it is unclear how much harmonization is needed to accommodate international systems such as a global greenhouse tax or system of tradeable permits. Moreover, market-based mechanisms require changes in domestic institutions that make and implement rules, as well as new forms of monitoring, for example, tracking of permit trading that could markedly increase administrative burden (102).

A shift towards the market also implies a change in the definition of compliance. Existing environmental regulation is directed towards specific, predetermined firm responses to pollution abatement; compliance is determined by whether reality conforms to the standard. Where markets are employed, compliance is determined by whether emissions are covered by a tradeable emission permit and/or payment of an effluent fee. However, it is a priori impossible to determine the quantity and spatial distribution of emissions that will result. This uncertainty implies new strategies for detecting noncompliance and new challenges for public environmental management, which has been largely premised on a strong regulatory role for government institutions. A logical place for further study is the international and domestic verification regime needed for effective implementation of these market-based strategies.

Although lacking the urgency of verification in arms control, we conclude that greater attention to verification of environmental agreements is warranted. It may be a catalyst to better design of agreements and reporting of information and a stimulus to countries’ capacity to comply, as more environmental problems are addressed by international agreements. An enhanced statistical base will be needed to assess performance and compliance in meeting environmental goals. More attention to the improvement of national and international statistical systems for energy, forests, fisheries, toxics, and so forth may prove one of the greatest benefits of the development of international regimes.

APPENDIX: LESSONS FROM ARMS CONTROL VERIFICATION

Verification of arms control agreements is quite different in salience and procedures compared with international environmental agreements. Arms control agreements address matters of “hard security” and thus it is especially important to have timely detection of defections. Because arms control agreements predominantly control state activities rather than state subjects (people, corporations, etc), arms control verification is politically and physically less intrusive than international environmental agreements on the liberties of state subjects, which tend to be guaranteed by constitutions and norms of freedom.

Regardless of the differences, a comparison between arms control and environmental verification may be a useful exercise, if only because so much attention has been devoted to the arms control cases during the past three decades. In this appendix we briefly review the arms control verification literature and draw several lessons. Other types of comparisons would also be illuminating, for example between environmental and international criminal law enforcement.

Verification figures prominently in US-Soviet nuclear arms control (103). Also studied are the role of third countries, the role of international organizations, conventional arms control (104), prospective agreements to strengthen chemical and biological weapons, and the role of nuclear operations (105).

NUCLEAR ARMS CONTROL IN PRACTICE All major post-World War II arms control failures have in part been due to claims that the agreement could not be adequately verified: the 1946 Baruch Plan to transfer all nuclear weapons and materials to the United Nations partially foundered on the inability to detect clandestine nuclear weapons production without highly intrusive inspections; perennial proposals for a comprehensive nuclear test ban (see below) have partially failed because of disagreements over on-site inspections needed to distinguish between nuclear explosions and earthquakes; the United States failed to ratify the 1979 Strategic Arms Limitation Talks (SALT) II treaty in part because of fears the Soviets could cheat without being detected.

Verification is intertwined with assessments and fears of noncompliance. Claims and counter-claims of deceit and noncompliance periodically characterize east-west arms control. Fear of cheating produced a characteristic style, sought at least by US negotiators, of highly specific arms control agreements that reduce ambiguity and make it easier to detect compliance and noncompliance (106, 107).

The issue of on-site inspection (OSI) for verification is a perennial arms control issue because, in many cases, it is the best method for assessing compliance (108, 109). Because it is potentially intrusive and therefore potentially useful for military and industrial espionage as well as arms control, OSI has proved difficult to employ. Through the 1970s intrusiveness of arms control verification was very low, with one exception (see below); rather, independent national means–cared national technical means (NTM), a term formally introduced in the SALT I treaty-were the norm. In practice, NTM has never been formally defined, but includes all forms of remote sensing whose platforms do not enter the other country’s territory (e.g. satellites but not aircraft; eavesdropping ships on the high seas but not territorial waters). NTM is not fully independent: the SALT process put limits on the extent to which nations could interfere with each other’s NTM, for example, by encrypting of certain data during missile testing and thus reducing the capacity of NTM to detect violations (107). 9

Recently arms control verification has become more intrusive and less politicized (110), because of improved east-west relations. The 1987 Intermediate Nuclear Forces (INF) agreement and the 1990 Treaty on Conventional Armed Forces in Europe (CFE) provide for on-site inspectors (22, 111). The 1991 Strategic Arms Reduction Talks (START) agreement allows on-site inspections of nuclear missiles, including surprise inspections. The United States has established an On-Site Inspection Agency (OSIA) to conduct inspections and perform other functions under these and other existing and prospective arms control agreements. As an indicator of the salience of arms control verification, OSIA’s budget for implementing INF alone is $522 million (112, 113).

One arms control arrangement–the International Atomic Energy Agency’s (IAEA) nuclear materials accounting-has made longstanding use of on-site inspection. Established in 1957, IAEA was charged with inspecting civilian nuclear power plants to “safeguard” all nuclear materials in participating countries, confirming they were not diverted from peaceful purposes. Under the 1968 nuclear nonproliferation treaty (NPT), IAEA safeguards have been extended to a larger group of nations and nuclear programs (114, 115, 116a). In practice, IAEA negotiates bilateral agreements with each country for each nuclear facility subject to safeguards; those contracts call for both regular and surprise short-notice (24-hour) inspection (117). IAEA safeguards are, by design, supposed to provide high confidence of timely detection of diversion of any significant amount of nuclear materials away from peaceful uses. “Timely” and “significant’” are defined by IAEA according to the material diverted.

IAEA inspections are limited, however, to nuclear facilities described in the bilateral agreements. Inspectors are not free to wander the countryside. IAEA members thought to own or be developing nuclear weapons are doing so outside of the declared facilities rather than diverting materials from the IAEA-monitored fuel cycle. Discovery of a well-advanced Iraqi nuclear weapons program by U.N. inspectors after the most recent Persian Gulf war is widely seen as a failure of safeguards procedures (Iraq was a member of NPT), and has underscored that timely detection of clandestine nuclear programs will require more intrusive inspections. At present, it is unclear (a) whether and to what degree IAEA has authority for more intrusive “special inspections” or whether such authority might be vested in IAEA, (b) whether and how IAEA might employ national intelligence data in its efforts to detect clandestine nuclear programs, and (c) what might be done when such programs are detected (118).

Currently IAEA safeguards apply to approximately 1000 nuclear facilities; a budget of approximately $50 million per year supports several hundred field inspectors and activities related to safeguards. Because IAFA provides equal inspections to all states under NPT, the bulk of IAEA safeguards resources are spent inspecting facilities in industrialized countries, primarily the France, Japan, and the United Kingdom. For comparison, the IAEA safeguards budget is approximately equal to the entire budget of the United Nations Environment Programme. The total IAEA budget is approximately $150 million and includes technical assistance, basic research, and other activities related to promotion of peaceful nuclear power.

LESSONS FROM PRACTICE AND THEORY First, verification can become a salient dimension of international cooperation, so much that agreements that cannot be verified adequately are politically infeasible. Clearly much rests on the definition of “adequate.” Concern about Soviet noncompliance had been so great within the US government that, since 1984, by requirement of Congress, the US President annually reported the status of Soviet compliance with arms control agreements (110).

Second, verification can be divisive. Within the United States, bitter disputes over verification, although a reflection of deeper ideological divisions, may have eroded the prospects for meaningful arms control in the late 1970s and early 1980s, especially because of debates over verifiability of the 1979 SALT II agreement. Disputes over which violations, if any, were significant led to escalating reciprocal charges of possible treaty “breakout,” all of which may have undermined support for international cooperation.

Third, verification is not an end in itself; rather, it should be seen as contributing to one’s overall goals, such as security (119). 10 Thus scholars have long distinguished between detecting important and unimportant violations of arms control agreements. Insofar as verification has contributed to increased confidence in east-west arms control–perhaps evidenced in the increasing stringency of arms control agreements and intrusiveness of verification-then it has probably enhanced the prospects for further arms control and security. Not all arms control contributes to increased security or lower military spending, but increased confidence in meaningful arms control in the past two decades is probably at least partially due to verification activities.

Fourth, the suite of technological and organizational arrangements for arms control verification has other purposes, for example, espionage. Attempts to explain the types of verification demanded in international agreements must consider the constraints and opportunities of these overlapping activities rather than just the more narrow purposes of arms control verification (14, 120, 121).

Fifth, technological change and scientific research programs can enhance the verification process. Research to improve verification techniques can make possible certain types of agreements; for example, research programs undertaken by government research programs to improve the capacity to distinguish earthquakes helped the negotiation of a partial test ban (21). Similarly, technological change in the commercial sector may also offer opportunities for verification and related activities.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of Wolfgang Fischer and Juan C. Di Primio, and James Broadus, Antonia and Abram Chayes, and Eugene Skolnikoff.

ENDNOTES

1 The success of those agreements was mixed at best, A notable exception, the highly successful 1911 Fur Seal Agreement, is discussed by Lyster (39).

2 As implied above, through the 1960s high levels of compliance reflected that quotas were set high and thus states had to make little or no effort to remain in compliance with their quotas.

3 IUCN has recently changed its name to the World Conservation Union.

A developing country is defined as having consumption of CFCs below 0.3 kilograms per capita.

5 NGOs are becoming active in many issue-areas. Particular NGOs have adopted particular issues: for example, IUCN (which has both governmental and nongovernmental members) is active in CITES and Greenpeace is active in whaling. To understand better how and why a particular NGO captures a certain issue one would have to look more closely at the goals and processes within the NGO.

6 For a review of the recent changes to the federal clean air legislation see Ref. 67.

7 As Birnie (37) shows, the IOS was always mentioned at IWC meetings; however, none of the parties seems to have been extremely active in forcing the idea. IOS was also difficult to put into place because of rigidity in the Whaling Convention. Thus, the 18-year delay does not disprove the hypothesis here, though it does weaken it.

8 Additional difficulties in negotiating intrusive arms control verification procedures stem from differences in the degree of openness of societies. Calls for intrusiveness are often surrogates for larger political debates over openness. For example, the United States long pushed for intrusive arms control inspections in part to underscore the closed nature of Soviet society. That US position has become more cautious in its demands for OSI since approximately 1987 because Glasnost, among other achievements, produced greater Soviet willingness to allow intrusive inspections. Faced with negotiating the need for intrusive inspections as an issue in its own right rather than as a surrogate debate, the United States has become less insistent on OSI. Ironically, in some cases such as the chemical weapons treaty currently under negotiation, the United States is now actively opposing some forms of intrusive inspection.

9 The open skies proposals of the 1950s (which resurfaced in the 1980s) would have modified what is now known as NTM by allowing free overflight of enemy territory. This would be useful not only for arms control verification but for other activities that enhance security; for example, open skies would allow easier confirmation that an enemy was not mobilizing and thus decrease skittishness in a crisis. Satellite observation may reduce the need for open skies, but many of the security benefits of open skies remain relevant today.

10 Interestingly, there has been little assessment of the costs of verification and the marginal contribution of spending on verification and spending on other measures that might enhance security. One study of the costs of verification is (113).

LITERATURE CITED

1. Krasner, S. D., ed. 1983. International Regimes. Ithaca: Cornell Univ. Press

2. Haggard, S., Simmons, B. A. 1987. Theories of international regimes. Int. Organ. 41:491-517

3. Young, O. R. 1990. Global environmental change and international governance. Millennium: J. Int. Stud. 3:337-46

4. Keohane, R. O. 1984. After Hegemony: Cooperation and Discord in the World Political Economy. Princeton: Princeton Univ. Press

5. Haas, E. B. 1990. When Knowledge is Power: Three Models of Change in International Organizations. Berkeley: Univ. Calif. Press

6. Nye, J. S. 1987. Nuclear learning and U.S.-Soviet security regimes. Int. Organ. 41:371-402

7. Young, O. R. 1989. The politics of international regime formation: Managing natural resources and the environment. Int. Organ. 43:349-75

8. Kay, D. A., Jacobson, H. K., eds. 1983. Environment Protection: The International Dimension. London: Allenheld Osmun

9. Caldwell, L. K. 1984/1990. International Environmental Policy: Emergence and Dimensions. Durham,NC: Duke Univ. Press

10. Wettestad, J., Andresen, S. 1991. The Effectiveness of International Resource Cooperation: Some Preliminary Findings. R:007-1991. Lysaker, Norway: Fridtjof Nansens Inst.

11. Young, O. R. 1992. The effectiveness of international institutions: Hard cases and critical variables. In Governance without Government: Order and Change in World Politics, ed. J. N. Rosenau, E.-O. Czempiel. New York: Cambridge Univ. Press

12. Haas, P. M., Keohane, R. O., Levy, M. A. forthcoming. Institutions for the Earth: Sources of Effective International Environmental Protection. Cambridge: MIT Press

13. Ostrom, E. 1990. Governing the Commons: The Evolution of Institutions for Collective Action. New York: Cambridge Univ. Press

14. Rowell, W. F. 1986. Arms Control Verification: A Guide to Policy Issues for the 1980s. Cambridge: Ballinger

15. Krepon, M., Umberger, M. 1988. Verification and Compliance: A Problem-Solving Approach. Cambridge: Ballinger

16. Chayes, A. H., Chayes, A. 1990. From law enforcement to dispute settlement: A new approach to arms control verification and compliance. Int. Security 14:147-64

17. Fischer, W. 1991. The Verification of International Conventions on Protection of the Environment and Common Resources: A comparative Analysis of the Instruments and Procedures for International Verification with the Example of Thirteen Conventions. Programmgruppe Technologiefolgenforschung, Forschungszentrum Julich

18. Fischer, W. 1991. The verification of a greenhouse gas convention—a new task for international politics? In Verification Report 1991: Yearbook on Arms Control and Environmental Agreements, ed. J. B. Poole, pp. 197- 206. New York: Apex

19. Gen. Account. Off., US Congress. 1992. International Environment: international Agreements Are Not Well Monitored. GAO/RCED-92-43.

20. United Nations Environ. Prog. (UNEP), 1989. Register of International Treaties and Other Agreements in the Field of the Environment. UNEP/GC.15/Inf.2. Nairobi: UNEP

21. Jacobson, H. K., Stein, E. 1966. Diplomats, Scientists and Politicians: The United States and the Nuclear Test Ban Negotiations. Ann Arbor: Univ. Mich.

22. Arms Control and Disarmament Agency (ACDA), US Dept. State. 1990. Arms Control and Disarmament Agreements: Texts and Histories of the Negotiations. Washington, DC: ACDA

23. Sand, P. 1990. Regional approaches to transboundary air pollution. In Energy: Production, Consumption and Consequences , ed. J. L. Helm. Washington, DC: Natl. Acad. Press

24. Levy, M. forthcoming. European acid rain: The power of toteboard diplomacy. See Ref. 12

25. Lammers, J. G. 1988. The European approach to acid rain. In International Law and Pollution, ed. D. B. Magraw, pp. 265-309. Philadelphia: Univ. Penn.

26. Chossudovsky, E. M. 1988. “East-West” Diplomacy for Environment in the United Nations: The High-Level Meeting within the Framework of the ECE on the Protection of the Environment, A Case Study. United Nations Inst. Train. Res. [UNITAR]. New York: United Nations

27. Boehmer-Christiansen, S., Skea, J. 1991 . Acid Politics: Environmental and Energy Policies in Britain and Germany. New York. Belhaven

28. Benedick, R. E. 1991. Ozone Diplomacy: New Directions in Safeguarding the Planet. Cambridge: Harvard Univ. Press

29. Parson, E. A. forthcoming. Stratospheric ozone and CFCs: The evolution and impact of international institutions. See Ref. 12.

30. M’gonigle, R. M., Zacher, M. W. 1979. Pollution, Politics and International Law: Tankers at Sea. Berkeley: Univ. Calif.

31. Sielen, A. B., McManus, R. J. 1983. IMCO and the Politics of Ship Pollution. See Ref. 8, pp. 140-83

32. Timagenis, G. J. 1980 . International Control of Marine Pollution. Vols. 1, 2. Dobbs Ferry, NY: Oceana

33. Mitchell, R. forthcoming. Intentional oil pollution of the oceans: Crisis, public pressure and structural standards. See Ref. 12.

34. Boxer, B. 1983. The Mediterranean Sea: Preparing and implementing a regional action plan. See Ref. 8, pp. 267-309

35. Haas, P. M. 1990. Saying the Mediterranean: The politics of International Environmental Cooperation. New York: Columbia Univ. Press

36. Haas, P. M. 1992. Save the seas: UNEP’s regional seas programme and the coordination of regional pollution control efforts. In Ocean Yearbook 9, ed. E. M. Borgese, N. Ginsburg, J. A. Morgan, pp. 188-211. Chicago: Univ. Chicago Press

37. Birnie, P. 1985. International Regulation of Whaling: From Conservation of Whaling to Conservation of Whales and Regulation of Whale-Watching. Vols. 1, 2. New York: Oceana

38. McHugh, J. L. 1974. The role and history of the International Whaling Commission. In The Whale Problem, ed. W. E. Scherill, pp. 305-35. Cambridge: Harvard Univ. Press

39. Lyster, S. 1985. International Wildlife Law. Cambridge: Grotius

40. Phillips, C. 1990. What the moratorium means in practice. Marine Policy 14:93-95

41. Andresen, S. 1989. Science and politics in the international management of whales. Marine Policy 13:99-117

41a. Andresen, S. 1989. See Ref. 41, pp. 109-11

42. Auburn, F. M. 1982. Antarctic Law and Politics. Bloomington: Indiana Univ. Press

43. Jorgansen-Dahl A., Ostreng, W., eds. 1991. The Antarctic Treaty System in World Politics. London: Macmillan

44. Peterson, M. J. 1988. Managing the Frozen South: The Creation and Evolution of the Antarctic Treaty System. Berkeley: Univ. Calif.

45. Favre, D. S. 1989. International Trade in Endangered Species. Dordrecht: Martinus Nijhoff

46. Kosloff, L. H., Trexler, M. C. 1987, The convention on international trade in endangered species: No carrot, but where’s the stick? Environ. Law Rep. 17:10222-36

47. Coull, J. R. 1988. The North Sea herring fishery in the twentieth century. In Ocean Yearbook 7, ed. E. M. Borgese, N. Ginsburg, J. R. Morgan, pp. 115-31. Chicago: Univ. Chicago Press

47a. Coull, J. R. 1988. See Ref. 47, pp. 129-30

48. Underdal, A. 1980. The Politics of International Fisheries Management: The Case of the Northeast Atlantic. Oslo: Universitetsforlaget

49. Cowling, E. B. 1982. Acid precipitation in historical Perspective. Environ. Sci. Technol. 16:110A-123A

50. World Meteorol. Organ. (WMO). 1990. Scientific Assessment of Stratospheric Ozone: 1989. 2 vols., Global Ozone Research and Monitoring Project Report 20

51. Boczek, B. A. 1986. The concept of regime and the protection of the marine environment In Ocean Yearbook 6, ed. E. M. Borgese, N. Ginsburg, pp. 271-97. Chicago: Univ. Chicago Press

52. Saetevik, S. 1988. Environmental Cooperation Between the North Sea States: Success or Failure? New York: Bellhaven

53. Andresen, S. 1989. The Environmental North Sea Regime: A successful regional approach. In Ocean Yearbook 8 , ed. E. M. Borgese, N. Ginsburg, J. R. Morgan, pp. 378-401. Chicago: Univ. Chicago Press

54. Freestone, D., Ijlstra, T., eds. 1991. The North Sea: Basic Legal Documents on Regional Environmental Coopera tion. Dordrecht: Graham and Trotman/Martinus Nijhoff

55. Hilz, C., Ehrenfeld, J. R. 1991. Transboundary movements of hazardous wastes: A comparative analysis of the policy options to control the international waste trade. Int. Environ. Affairs 3:26-63

56. McManus, R. J. 1983. Ocean dumping: Standards in action. See Ref. 8, pp. 119-39

57. Bruce, M. 1986. The London dumping convention, 1972: The first decade and future. See Ref. 51, pp. 298-318

58. Birnie, P. 1985. The role of developing countries in nudging the International Whaling Commission from regulating whaling to encouraging nonconsumptive uses of whales. Ecol. Law Q. 12:937-75

58a. Birnie, P. 1985. See Ref. 58, pp. 946-50

59. MeElroy, J. K. 1984. Antarctic fisheries: History and prospects. Marine Policy 8:239-58

60. Bardach, J. E. 1986. Fish far away: Comments on the Antarctic fisheries. See Ref. 51, pp. 38-54

61. Peterson, M. J. forthcoming. International fisheries management. See Ref. 12

62. Farwell, J., Elles, J. 1984. In Search of a Common Fisheries Policy. Brookfield, Vt: Gower

63. Russell, C. S., Harrington, W., Vaughan, W. J. 1986. Enforcing Pollution Control Laws. Washington, DC: Resour. for the Future

64. Magat, W. A., Viscusi, W. K. 1990. Effectiveness of the EPA’s regulatory enforcement: the case of industrial effluent standards. J. Law Econ. 33:331-60

65. Roberts, M. J., Farrell, S. O. 1978. The political economy of implementation: The Clean Air Act and stationary sources. In Approaches to Controlling Air Pollution, ed. A. F. Friedlander. Cambridge: MIT Press

66. Melnick, R. S. 1983. Regulation and the Courts: The Case of the Clean Air Act. Washington, DC: The Brookings Inst.

67. Ferrall, B. L. 1991. The Clean Air Act Amendments of 1990 and the use of market forces to control sulfur dioxide emissions. Harvard J. Regul. 28:235-52

68. Gen. Account. Off., US Congress. 1989. Air Pollution: National Air Monitoring Network is Inadequate. GAO/RCED-90-15

69. Gen. Account. Off., US Congress. 1990. Air Pollution: Improvements Needed in Detecting and Preventing Violations. GAO/RCED-90-155

70. Harrington, W. 1981. The Regulatory Approach to Air Quality Management: A case study of New Mexico. Research Paper R-25, Resour. for the Future, Washington, DC

71. Counc. Environ. Qual. (CEQ). 1990. Environmental Quality. Washington, DC: US Gov. Print. Off.

72. Environ. Protect. Agency (EPA, US). 1990. National Air Quality and Emissions Trends Reports. Off. Air Qual. Plann. Standards, EPA/450/4-90-002

73. Gen. Account. Off., US Congress. 1987. Hazardous Waste: Facility Inspections Are Not Thorough and Complete. GAO/RCED-88-20.

74. Gen. Account. Off., US Congress. 1990. Drinking Water: Compliance Problems Undermine EPA Program as New Challenges Emerge. GAO/RCED-90-127

75. W. K. Viscusi, 1986. The impact of occupational safety and health regulation, 1973-1983. Rand J. Econ. 17: 567-80

76. Camara v. Municipal court of the City and County of San Francisco. 1967. US Supreme Court 387:523-40

77. See v. City of Seattle. 1967. US Supreme Court 387:541-55

78. Air Pollution Variance Board of Colorado v. Western Alfalfa Corp. 1974. US Supreme Court 416:861-66

79. Becker, G. S. 1968. Crime and punishment: An economic approach. J. Polit. Econ. 76:169-217

80. Stigler, G. J. 1970. The optimum enforcement of laws. J. Polit. Econ. 78:526-36

81. Downing, P. B., Watson, W. D. 1974. The economics of enforcing air pollution controls. J. Environ. Econ. Manage. 1: 219-36

82. Storey, D. J., McCabe, P. J. 1980. The criminal waste discharger. Scottish J. Polit. Econ. 27:30-40

83. Harford, J. D. 1978. Firm behavior under imperfectly enforceable pollution standards and taxes. J. Environ. Econ. Manage. 5:26-43

84. Viscusi, W. K., Zeckhauser, R. J. 1979. Optimal standards with incomplete enforcement. Public Policy 27:437-56

85. Beavis, B., Walker, M. 1983. Random wastes, imperfect monitoring and environmental quality standards. J. Public Econ. 21:377-87

86. Russell, C. S. 1990. Monitoring and enforcement. In Public Policies for Environmental Protection, ed. P. R. Portney. Washington, DC: Resour. for the Future

87. Ordeshook, P. C. 1986. Game Theory and Political Theory: An Introduction. New York: Cambridge Univ. Press

88. Stein, A. 1983. Coordination and collaboration: regimes in an anarchic world. See Ref. 1, pp. 115-40

89. Snidal, D. 1985. Coordination versus Prisoners’ Dilemma: Implications for international cooperation and regimes. Am. Polit. Sci. Rev. 79:923-42

90. Oye, K. A. 1986. Explaining cooperation under anarchy: Hypotheses and strategies. In Cooperation Under Anarchy, ed. K. A. Oye, pp. 1-24. Princeton: Princeton Univ. Press

91. Efinger, M., Breitmeier, H. 1991. Verifying a convention on greenhouse gases: A game-theoretic approach. In A Regime to Control Greenhouse Gases: Issues of Verification, Monitoring, Institutions, ed. J. C. Di Primio, G. Stein, pp.59-68. Proc. Workshop, Bad Neuenahr, June 12-14. Forschungszentrum Jülich, Programmgruppe Technologiefolgenforschung

92. Axelrod, R. 1984. The Evolution of Cooperation. New York: Basic Books

93. Putnam, R. D. 1988. Diplomacy and domestic politics: The logic of two-level games. Int. Organ. 42:427-60

94. Wilson, J. Q. 1990. Bureaucracy. New York: Basic Books

95. Krasner, S. D. 1983. Structural causes and regime consequences: regimes as intervening variables. See Ref. 1, pp. 1-21

96. Keohane, R. O., Nye, J. S. 1977/1989. Power and Interdependence. Glenview, Ill: Scott, Foresman. 2nd ed.

97. Keohane, R. O. 1986 Reciprocity in international relations. Int. Organ . 40:1-27

98. Carnegie Comm. Sci., Technol., Gov. 1992. Report of the Task Force on Nongovernmental Organizations. W. D. Carey and C. M. Mathias, chairs. New York: Carnegie Comm.

99. Kratochwil, F. V. 1989. Rules, Norms, and Decisions: On the Conditions of Practical and Legal Reasoning in International Relations and Domestic Affairs. New York: Cambridge Univ. Press

100. Nadelman, E. A. 1990. Global prohibition regimes: the evolution of norms in international society. Int. Organ. 44:479-526

101. Chayes, A., Chayes, A. H., 1991. Adjustment and compliance processes in international regulatory regimes. In Preserving the Global Environment: The Challenge of Shared Leadership, ed.J. T. Mathews. pp. 280-308. New York: Norton

102. Victor, D. G. 1991. Limits of market-based strategies to slow global warming: The case of tradeable permits. Policy Sci. 24:199-222

103. Crawford, A., MacKinnon, G., Hanson, L, Morris, E. 1987. Compendium of Arms Control Verification Proposals. Vols. 1-3. Operational Research and Analysis Establishment, Extramural paper no. 42. Ottawa, Canada: Dept. Natl. Defence

104. Kokowki, R., Koulik, S., eds. 1990. Verification of Conventional Arms Control in Europe: Technological Constraints and Opportunities. Boulder: Westview Press

105. May, M. M., Harvey, J. R. 1987. Nuclear operations and arms control. In Managing Nuclear Operations, ed. A. B. Carter, J. D. Steinbruner, C. A. Zraket, pp. 704-35. Washington, DC: The Brookings Inst.

106. Newhouse, J. 1973. Cold Dawn: The Story of SALT. New York: Holt, Rinehart and Winston

107Talbott, S. 1979. Endgame: The Inside Story of SALT II. New York: Harper & Row

108. Dunn, L. A. with Gordon, A. E., eds. 1990. Arms Control Verification and the New Role of On-site Inspection. Lexington, Mass: Lexington Books

109. Graybeal, S. N., Krepon, M. 1988. On-site inspections. See Ref. 15, pp. 92-108

110. Lowenthal, M. M. 1991. The politics of verification: What’s new, what’s not. The Washington Q . 14:119-31

111. Kunzendorff, V. 1989. Verification in Conventional Arms Control Adelphi Papers 245 . London: Brassey’s

112 Gen. Account. Off., US Congress. 1991. Arms Control: Intermediate-Range Nuclear Forces Treaty Implementation. GAO/NSIAD-91-262

113. Congressional Budget Office (CBO), United States Congress. 1990. U.S. Costs of Verification and Compliance under Pending Arms Treaties. Washington, DC: CBO

114. Scheinman, L. 1985. The Nonproliferation role of the International Atomic Energy Agency: A Critical Assessment. Washington, DC: Resour. for the Future

115. Scheinman, L. 1987. The International Atomic Energy Agency and World Nuclear Order. Washington, DC: Resour. for the Future

116. Schroeer, D. 1984. Science, Technology and the Nuclear Arms Race. New York: Wiley

116a. Schroeer, D. 1984. See Ref. 116, chapter 14

117. Fischer. D., Szasz, P. 1985. Safeguarding the Atom: A Critical Appraisal. Stockholm Int. Peace Res. Inst. London: Taylor & Francis

118. Pilat, J. F. 1992. Iraq and the future of nuclear nonproliferation: The roles of inspections and treaties. Science 255: 1224-29

119. Schelling, T. C., Halperin, M. H. 1962/1985 Strategy and Arms Control. Washington, DC: Pergamon-Brassey’s (reissue)

120. Tsipis, K., Hafemeister, D. W., Janeway, P., eds. 1986. Arms Control Verification: The Technologies That Make It Possible. Washington, DC: Pergamon-Brassey’s

121. Off. Technol. Assess. (OTA), US Congress. 1990. Verification Technologies: Measures for Monitoring Compliance with the START Treaty. Summary. Washington, DC: OTA