What do animals eat? For many animals other than large, diurnal, terrestrial species, this is surprisingly hard to study. In August 2009 Frontiers Zool researchers from Norway and France apply standardized DNA analysis, and compare with microscopic techniques, for diets of two arctic voles, Microtus oeconomus (Tundra vole) and Myodes rufocanus (Grey red-backed vole) collected in July and September in northern Norway. Soininen and colleagues analyzed stomach contents of 48 individuals using a microscope and a DNA sequencer, the latter to analyze amplified P6 loop (length 10-46 bp) of chloroplast trnL intron. As previously described by some of the same authors (Taberlet et al 2007) P6 loop is amplifiable from diverse gymnosperms and angiosperms with a single set of primers, however not surprisingly this very short segment often does not provide species-level identification even with local flora.

For microhistological analysis, the authors first prepared a photographic guide by collecting samples of all vascular plant species in study area; the samples were dried, scraped to reveal epidermis, bleached, boiled in table vinegar, then 40x micrographs were taken. Stomach content samples were filtered, bleached, and 1 droplet was examined on a microscope slide, counting 25 bits of identifiable material; if >95% of material was unidentifiable, a new slide was prepared. In 4 individuals, no slide with adequate amount of microscopically identifiable material count be made. For DNA analysis, The P6 loop was amplified, using tagged primers that identified each individual, and the pooled material was analyzed by pyrosequencing, and the sequences were compared to a database of 842 species representing “all widespread and/or ecologically important taxa of the arctic flora”. With standardized DNA approach (the authors call this DNA barcoding although it does not use recently agreed-upon standard loci) “75% of sequences were identified at least to genus level, whereas with microhistological method, less than 20% of the identified fragments could be specified at this level”.
As a result of greater resolution as compared to microscopy, DNA identified more plant species and genera in vole diets (for M. oeconomus, 13 species/9 genera vs 9 species/5 genera; for M. rufocanus 17 species/8 genera vs 11/7). Both methods showed large variation among individuals. Limitations to DNA approach include possible overrepresentation of species with chloroplast-rich tissues and inability of P6 to detect fungi, horsetails, and mosses. Looking ahead, researchers conclude “DNA-based technology makes it possible to study vole-plant interaction by non-destructive sampling of faeces in the natural habitats of voles”, first identifying rodent species using a mitochondrial DNA marker (and potentially sex and individual identification with Y-chromosome and microsatellite detection) and then diet analysis. I conclude standardized DNA analysis opens wide avenues for ecology.
Marine zooplankton comprise an enormous mass of diverse organisms distributed throughout the world’s oceans from deep waters to surface. Zooplankton include representatives of at least dozen phyla, some of which are larval forms of much larger animals, and challenge identification with their diversity and tiny size. In
Machida and colleagues found evidence for 189 species, only 10 of which could be confidently matched to reference sequences. This report demonstrates that this sort of “kitchen blender” approach, which has previously been applied largely to bacterial and archaeal communities, shows promise for assemblages of eukaryotes and reveals surprisingly few organisms have reference sequences in databases. Identified organisms included several copepods as well as presumably larval forms of 
The horse-chestnut leaf miner moth Cameraria ohridella (link to
Tardigrades, commonly called water bears, are tiny (0.1-1.5 mm) water-dwelling invertebrates found in diverse environments. About 1000 species are known. Morphologic identification is difficult and may be limited to certain life stages–some species can be identified only from eggs, for example. Tardigrades can transform into a dormant state with remarkable ability to withstand extreme drying, cold, and radiation for prolonged periods, making them of interest for persons studying biology of tissue repair, aging and other fields.
“DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL and matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.”
Back to the study, Steinke and colleagues found distinct barcodes among 384/391 (98.2%); 9 species displayed 2 or 3 distinct clusters, most of which were allopatric. Review of these potential “splits” revealed possible inappropriate synonymization in several cases. On the other side, 2 pairs and 1 triplet of species were not distinguished by DNA barcodes using distance. I look more closely at one of these examples, butterfly fishes Chaetodon multicinctus and C. punctatofasciatus, to see if there might be diagnostic characters whose signal is swamped by intraspecific variation. As in figure, there are 2 possibly diagnostic differences among this species pair. Of course, this sort of analysis only works for known species, but I wonder how many other species pairs/sets with “overlapping” barcodes have diagnostic differences.
In
In