Leishmaniasis is a chronic parasitic infection caused by various Leishmania species, kinetoplast protozoans related to Trypanosoma (the latter includes agents of African sleeping sickness and Chagas disease, suggested as a cause of Charles Darwin’s ill health in late life). Depending on the species involved, leishmaniasis manifests as illness ranging from non-healing cutaneous or mouth ulcers (CL) to sometimes fatal visceral infection (VL). In the Neotropics, 12 species infecting humans have been identified, all associated with CL. Neotropical leishmaniasis is mostly zoonotic (ie originates from animal reservoirs as opposed to human-to-human transmission), and the vectors are tiny phlebotomine sand flies, particularly Lutzomyia sp.
In March 2010 PloS Neglected Trop Diseases investigators from Smithsonian Tropical Research Institute (STRI) and Instituto Conmemorativo Gorgas de Estúdios para la Salud, Panamá, apply DNA testing to Lutzomyia sandflies collected on Barro Colorado Island, STRI’s island home in the Panama Canal. Aiming to analyze as many species as possible, Azpurua and colleagues selected 435 individuals, which they morphologically identified as representing 16 Lutzomyia and 2 Brumptomyia sandfly species, for further analysis. Over 95% of specimens in the original collection were from one species, L. panamensis, so this was not a completely representative sample; nonetheless, “the relative abundances of species collected in this study were significantly correlated to those found in a previous intensive study of sand fly community composition on the [Panama] mainland…that collected over 30,000 Lutzomyia individuals in 35 species.”
To skip to the end, COI barcodes unambiguously assigned all 49 individuals to 18 distinct lineages corresponding to named species, plus highlighted 2 genetically-divergent individuals that might represent cryptic species. Using primers for ITS-1 (a nuclear gene) and mini-circle DNA (part of mitochondrial genome), Leishmania were detected in 2 of 5 human-biting species, Lu. trapidoi (13/30 individuals tested, 43.3%) and Lu. gomezi (5/19 individuals tested, 26.3%). By my estimate, taking into account relative abundances of Lutzomyia sp., about 1% of Barro Colorado Island sand flies carry Leishmania. Surprisingly, DNA sequencing identified the parasite as Le. naiffi, a South American species not previously reported in Panama. Finally, using the same set of DNA extracts, the researchers tested for Wolbachia, a rickettsial intracellular insect parasite and candidate biological control agent. Wolbachia were found in 3 of 18 species, including 50% of Lu. trapidoi, the main vector of CL in Panama. As an aside, I note that the presence of Wolbachia apparently did not interfere with discriminating among sand fly species; hypothesized interference from Wolbachia was one of the early worries some expressed about DNA barcoding (e.g Whitworth Proc Biol Sci 2007).
Standardized DNA testing enables many more persons to identify insects, regardless of life stage, including those that serve as vectors for human diseases. In this report by Azpurua and colleagues, the discovery of a new species of Leishmania for Panama, and possible undescribed Lutzomyia vectors, suggests that wide application of standardized DNA testing will lead to further discoveries relevant to control of human and animal infectious diseases.
Of the three steps required to get from a specimen to a DNA barcode, namely DNA isolation, PCR (polymerase chain reaction), and sequencing, the first step is the most labor intensive and hardest to automate. Numerous protocols/kits have been developed to optimize DNA isolation from various types of specimens, such as plant vs animal tissues. As described by the Guelph researchers, “these procedures force cells to release their DNA via physical pertubation and/or chemical treatment, which is then followed by a clean-up procedure in which unwanted cellular compoents are separated from the DNA.” The researchers “hypothesized that a small amount of DNA leaks from the tissue into the preservation solution (usually ethanol), and that this DNA was amplifiable using a standard PCR protocol.” To start, they analyzed Monte Alban mescal, which is sold with a “worm” (a caterpillar of the agave moth, Hypopta agavis) in each bottle. They evaporated 50 mL mescal, re-dissolved the residue in water, applied this to a Qiagen MinElute spin column, resuspended the product in 50 ?L water, and used 2 ?L of resulting solution in a standard 25 ?L PCR reaction, with successful amplification and sequencing of 130 base mini-barcode of COI. This case was presumably challenging as mescal is only 40% ethanol and contains a variety of material that might inhibit PCR. In subsequent tests, 1 mL of 95% ethanol used to preserve specimens was evaporated, resuspended in 30 ?L of water without column purification, and 2 ?L used for PCR.
Although birds have been studied in more detail than any other large group of animals, mtDNA continues to reveal many overlooked species, such that named taxa turn out to be comprised of two or more distinct species. These revisions include some very familiar birds, e.g., Canada Goose, which was recently recognized as comprising two species, Cackling Goose (B. hutchinsii) and Canada Goose (B. canadensis) (
To establish a cutoff for artefactual errors due to PCR and/or sequencing, a control comparison with amplified nuclear DNA was performed, which yielded an average of 0.058% (SD 0.057%) mutations per base and a maximum of 0.82% mutations. He and colleagues used a “very conservative assumption that all variants in excess of twice this value (1.6%) represented true heteroplasmies rather than sequencing artefacts.” Now to some results! The researchers detected “28 homoplasmic alleles and 8 heteroplasmic alleles in this sample of normal colonic mucosa.” Here “homoplastic” refers to differences from the reference human mtDNA sequence (
In
DNA helps answer the origin of infectious diseases: are cases sporadic events or part of larger epidemic, such as the 
In terms of citizen participation, the MPG story suggests expanding opportunities for biological research that harnesses the skill and energy of non-professionals, a step beyond the successful
Herbal products make a compelling case for DNA-based identification–how else to recognize dried bits of roots, leaves, stems, bark, and flowers from a multitude of species? In
This study demonstrates advantages of DNA barcoding approach for plant identification. Of course, there is already a lot of interest in DNA identification of herbal plants in general and Dendrobium orchids in particular. For example, I found over a dozen articles describing DNA methods for distinguishing Dendrobium sp. However, the methods described are limited to identifying species in this one genus, which means one has to have a pretty good idea what the specimen is before applying DNA testing! This highlights the essential advantage of barcoding–a standardized approach can be applied to any unknown, and makes feasible creation of a comprehensive reference library.
In forensic investigation, insect evidence helps date the time of death, as the various species that colonize corpses exhibit different stages of development according to time and temperature. Determining the post-mortem interval (PMI) rests on accurate species identification, including of immature forms. In
In
In my view, this paper demonstrates that a survey approach produces a high level of discovery and hypothesis-generating, and leads me to question how well we understand diversity in birds, which are generally considered the taxonomically best-known large group of animals. Many of the species in the present study have been known to science for over 250 years, are resident in densely-settled, scientifically-advanced regions, and yet Johnsen and colleagues demonstrate hidden diversity. In 1946, Ernst Mayr compiled a