Forests, Farms and Materials

Rendering of satellite-to-tractor data transmission

Eight thousand years ago, when humans played only bit parts in the world ecosystem, trees covered two-fifths of the land. Since then, humans have grown in number while thinning and shaving the forests to cook, keep warm, grow crops, plank ships, frame houses, and make paper.  Fires, saws, and axes have cleared about half of the original forestland, and some forest, though not all, has been replaced.  Some analysts warn that within decades, the remaining natural forests will disappear altogether.  A good deal of the planet’s biological diversity lives in forests (mostly in the tropics), and this diversity diminishes as trees fall.  Healthy forests protect watersheds and generate clean drinking water; they remove carbon dioxide from the air and thus help maintain the climate.  The twentieth century witnessed the start of a “Great Restoration” of the world’s forests. Efficient farmers and foresters are learning to spare forestland by growing more food and fiber in ever-smaller areas. 

Is a similar “dematerialization” of human societies is under way?  Can we identify a decline over time in the weight of industrial materials used to produce the end products consumed in the Human Environment? More broadly, are there signs of an absolute or relative reduction in the quantity of materials required to serve economic functions?   Dematerialization matters enormously for the human environment as a lower materials intensity of the economy could reduce the volume of wastes generated, limit human exposures to hazardous materials, and conserve landscapes.  

The PHE studies changes in land use and examines trends, scales, and relations of resource consumption within and across national economies to expose opportunities to improve the quality of human environment.

About the icon – Rendering of satellite-to-tractor data transmission 

Publications about Forests, Farms and Materials

JH Ausubel. The Potato and the Prius (PDF). 2018 Keynote address to the 2018 Potato Business Summit of the United Potato Growers of America, Orlando, FL, 10 January 2018.

JH Ausubel, IK Wernick. The Shrinking Footprint of American Meat. The Breakthrough Journal 2017

A Yazdanbakhsh, LC Bank, T Baez, IK Wernick. Comparative LCA of concrete with natural and recycled coarse aggregate in the New York City area (PDF). Intl Journal of Life Cycle Assessment 2017

Ausubel, JH. Peak Farmland and Potatoes (PDF). insert to Spudman 52 (8): November–December 2014

JH Ausubel, IK Wernick, and PE Waggoner. Peak Farmland and the Prospect for Land Sparing (PDF). Population and Development Review 38 (Supplement): 217–238 2012

A Rautiainen, IK Wernick, PE Waggoner, JH Ausubel, PE Kauppi. A National and International Analysis of Changing Forest Density [external link]. PLoS ONE 6 (5): 2011 timber volume, forest density, carbon sequestration

JH Ausubel. Rethinking the inedible. Martha's Vineyard Gazette 2010 Fisheries, marine life, food

JH Ausubel, PE Waggoner. Dematerialization: variety, caution, and persistence [external link]. Proc Natl Acad Sci U S A 105 (35): 12774–12779 2008 10.1073/pnas.0806099105 D Dematerialization, Consumption, carbon, cropland, energy, fertilizer, impact

PE Waggoner, JH Ausubel. Quandaries of forest area, volume, biomass, and carbon explored with the forest identity [external link]. Connecticut Agricultural Experiment Station Bulletin 1011 13 pp 2007 Forest, tree volume, carbon sequestration, allometry

PE Kauppi, JH Ausubel, J-Y Fang, AS Mather, RA Sedjo, PE Waggoner. Returning forests analyzed with forest identity [external link]. Proc Natl Acad Sci U S A : 17574–17579 2006 10.1073/pnas.0608343103 Forest, tree volume, carbon sequestration, forest identity, allometry

JH Ausubel, PE Waggoner, IK Wernick. Foresters and DNA (PDF). Chapter 2 in Landscapes, Genomics and Transgenic Forests pp. 13–31 2006 CG Williams (ed), Published by Kluwer, Dordrecht Forests, innovation, DNA

TY Hsiao, YT Huang, YH Yu, IK Wernick. Modeling materials flow of waste concrete from construction and demolition wastes in Taiwan (PDF). Resources Policy 28 (2002): 39-47 2003 Material flows; Construction and demolition waste; Waste concrete; Recycling; Dynamic modeling

JH Ausubel. Clark, T. and R. Staebler, eds.. On Sparing Farmland and Spreading Forest Forestry at the Great Divide: Proceedings of the Society of American Foresters 2001 Convention, Society of American Foresters, Bethesda MD 127–138 2002 land use, intensive agriculture, precision forestry

PE Waggoner, JH Ausubel. How Much Will Feeding More and Wealthier People Encroach on Forests? (PDF). Population and Development Review 27 (2): 239–257 2001 Forests, land use, agriculture

CR Frink, PE Waggoner, JH Ausubel. Nitrogen on the Land: Overcoming the Worries – lifting fertilizer efficiency and preserving land for nonfarming uses Pollution Prevention Review 11 (3): 77–82 2001 agriculture, nitrogen fertilizer, land use

DG Victor, JH Ausubel. Restoring the Forests Foreign Affairs 79 (6): 127–144 2000 Forests, land use, agriculture

IK Wernick, PE Waggoner, JH Ausubel. The Forester’s Lever: Industrial Ecology and Wood Products Journal of Forestry 98 (10): 8–14 2000 Forests, land use, agriculture, wood products, forestry

CR Frink, PE Waggoner, JH Ausubel. Nitrogen fertilizer: Retrospect and prospect (PDF). Proc Natl Acad Sci U S A : 1175–1180 1999 agriculture, fertilizer, nitrogen, industrial ecology, population

IK Wernick, PE Waggoner, JH Ausubel. Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the United States Journal of Industrial Ecology 1 (3): 125–145 1997 agriculture, forest land, forest management, forestry, forests, industrial ecology, intensity of use, land use, material efficiency, timer removals, wood products

IK Wernick, R Herman, S Govind, JH Ausubel. National Academy, Washington DC, 1997. Materialization and Dematerialization: Measures and Trends (PDF). Pp 135-156 in Technological Trajectories and the Human Environment, JH Ausubel and HD Langford (eds) 1997 dematerialization, material substitution, materials, life cycle

IK Wernick. Consuming materials: the American way (PDF). Technological Forecasting and Social Change : 111–122 1996 dematerialization, material substitution, materials, life cycle, recycling

PE Waggoner, JH Ausubel, IK Wernick. Lightening the Tread of Population on the Land: American Examples (PDF). Population and Development Review 22 (3): 531-45 1996 population, land use, forestry, agriculture

IK Wernick, JH Ausubel. National Material Metrics for Industrial Ecology Resour Policy 21 (3): 189–198 1995 dematerialization, material substitution, materials, life cycle, metrics, environmental performance measures

IK Wernick, JH Ausubel. National Materials Flows and the Environment (PDF). Annual Review of Energy and the Environment : 463–492 1995 Republished in Measures of Environmental Performance and Ecosystem Condition, P. Schulze (ed.), National Academy, Washington, D.C., 1999, pp. 157-174. dematerialization, material substitution, materials, life cycle, metrics, recycling

PE Waggoner. How Much Land Can Ten Billion People Spare for Nature? [external link]. Task Force Report #121, Council for Agricultural Science and Technology, Ames IA 1994 agriculture, forestry, land use, fertilizer

IK Wernick. Dematerialization and secondary materials recovery in the U.S. (PDF). Journal of the Minerals, Metals, and Materials Society 46 (4): 39–42 1994 dematerialization, material substitution, materials, life cycle, recycling

R Herman, SA Ardekani, JH Ausubel. Dematerialization (PDF). Pp 50-69 in J.H. Ausubel and H.E. Sladovich, eds., Technology and Environment, National Academy, Washington DC 1989 Also in Technological Forecasting and Social Change 37(4):333-348, 1990. dematerialization, material substitution, materials, life cycle, metrics, recycling

MH Glantz, JH Ausubel. The Ogallala aquifer and carbon dioxide: Comparison and convergence. (PDF). Environmental Conservation : 123-131 1984

The purpose of the present study is to compare the environmental impacts of using coarse natural aggregate (NA) and coarse recycled concrete aggregate (RCA) to produce concrete in the New York City area, by means of a unique LCA framework that incorporates comprehensive regional data.