The Barcode Blog

A mostly scientific blog about short DNA sequences for species identification and discovery. I encourage your commentary. -- Mark Stoeckle

Subscribe to this blog

Sign up for email notifications

FDA certifies barcoding for seafood ID, opening commercial, educational opportunities

Seafood is often mislabeled–in the past year, barcode surveys in Canada (Hanner et al 2011), Ireland (Miller et al 2011), Spain (ICIJ 2011), United Kingdom, and United States (Boston Globe, October 2011; Consumer Reports, December 2011) documented 10-50 percent mislabeling of fish items, always as more expensive or more desirable species, including those sold at prominent restaurants and stores. As highlighted in 2011 Oceana report, mislabeled seafood is commercial fraud, exposes consumers to health risks, and hides unsustainable fishing practices. However, identifying seafood is challenging–hundreds of species from around the world enter the marketplace, often as filets or steaks lacking distinguishing external features. In October 2011, US Food and Drug Administration (FDA) formally adopted DNA barcoding for seafood identification, the culmination of validation studies conducted by FDA beginning in 2008. The summary states:

“Substituted and/or mislabeled seafood is considered to be misbranded by the FDA and is a violation of Federal law.”

FDA adoption of DNA barcoding as an identification standard opens commercial opportunities. On January 2, Vancouver Sun reported that Tradex Foods, a Canadian frozen seafood importer, is using DNA barcoding to help eliminate what their spokesperson described as “rampant” mislabeling in the industry. Tradex collects 10 to 30 samples a month at overseas processing facilities, flies these to US for testing by ACTG, Inc. in Illinois at $70 a sample with turnaround time of 2-3 days, while the frozen fish itself is in transit by ship. The article reports that Canadian Food Inspection Agency (CFIA), the federal agency responsible for verifying quality and labeling of seafood imports, expects to begin employing DNA barcoding in 2012. SGS Group, a global testing company, including food product safety, recently posted a press release on The Open Press highlighting the need for seafood testing and the FDA adoption of DNA barcoding, as well as the company’s capability. Applied Food Technologies, in Florida, is a molecular diagnostics company for food industry, specializing in seafood identification, with turnaround time of 5-10 days according to their website.

Routine testing of food and biologicals such as herbal medicines seems likely to be one of the largest and most visible applications of DNA barcoding. I expect that other companies are in or will enter this market.

I look forward to incorporation of DNA barcoding in forensic certification programs, with applications in marketplace fraud as with food, illegal trade of wildlife, and murder investigation, by dating time of death by identifying insect larvae in corpses. Already effective, DNA barcoding including for forensic applications is poised to expand, thanks to strong trends improving speed and sensitivity in DNA recovery and decreasing costs of DNA analysis.

Update 9 jan 2012: My comments above on food authentication echoed inĀ  “Will DNA barcoding revolutionise the food industry” article in yesterday’s Metro, distributed free to commuters in 50 UK cities , circulation 1.3 million.

This entry was posted on Thursday, January 5th, 2012 at 3:53 pm and is filed under General. You can follow any responses to this entry through the RSS 2.0 feed. Both comments and pings are currently closed.

Comments are closed.


About this site

This web site is an outgrowth of the Taxonomy, DNA, and Barcode of Life meeting held at Banbury Center, Cold Spring Harbor Laboratory, September 9-12, 2003. It is designed and managed by Mark Stoeckle, Perrin Meyer, and Jason Yung at the Program for the Human Environment (PHE) at The Rockefeller University.

About the Program for the Human Environment

The involvement of the Program for the Human Environment in DNA barcoding dates to Jesse Ausubel's attendance in February 2002 at a conference in Nova Scotia organized by the Canadian Center for Marine Biodiversity. At the conference, Paul Hebert presented for the first time his concept of large-scale DNA barcoding for species identification. Impressed by the potential for this technology to address difficult challenges in the Census of Marine Life, Jesse agreed with Paul on encouraging a conference to explore the contribution taxonomy and DNA could make to the Census as well as other large-scale terrestrial efforts. In his capacity as a Program Director of the Sloan Foundation, Jesse turned to the Banbury Conference Center of Cold Spring Harbor Laboratory, whose leader Jan Witkowski prepared a strong proposal to explore both the scientific reliability of barcoding and the processes that might bring it to broad application. Concurrently, PHE researcher Mark Stoeckle began to work with the Hebert lab on analytic studies of barcoding in birds. Our involvement in barcoding now takes 3 forms: assisting the organizational development of the Consortium for the Barcode of Life and the Barcode of Life Initiative; contributing to the scientific development of the field, especially by studies in birds, and contributing to public understanding of the science and technology of barcoding and its applications through improved visualization techniques and preparation of brochures and other broadly accessible means, including this website. While the Sloan Foundation continues to support CBOL through a grant to the Smithsonian Institution, it does not provide financial support for barcoding research itself or support to the PHE for its research in this field.