Energy and Climate

For 200 years, the world has progressively lightened its energy diet by favoring hydrogen atoms over carbon in our hydrocarbon stew.  Energy technologies succeed when economies of scale form part of their conditions of evolution.   Like computers, to grow larger, the energy system must now shrink in size and cost.  The successful decarbonization of the energy system, the key to the alleviation of numerous environmental problems, will ultimately depend on the use of pure hydrogen fuel produced from sources and processes that are carbon-free.  Rapid evolution of the energy system along its current trajectory, combined with cultural change, can avert the environmental danger.  

Science has effectively alarmed many people about the chances human activities will harm Earth’s climate. More importantly, science and engineering can lessen worries about climate change.  Technology can make adapting to climate change, offsetting emissions, and preventing emissions cheap and effective. The trick is easing in the changes when the technologies turnover, operating at the point where old things are substituted anyway. Hope is a better companion than fear.

The PHE studies long-term trajectories in the energy system and means to improve its performance.   We analyze ways to reduce the carbon intensity of energy systems in order to lessen fears and lift hopes about climate.

About the icon – Atmospheric cloud vortex

Publications about Energy and Climate

JH Ausubel. Density: Key to Fake and True News About Energy and Environment (PDF). 2017 Presented at a meeting of the American Association of Petroleum Geologists, Next 100 Years of Global Energy Use: Resources, Impacts and Economics, Houston Convention Center, 4 April 2017. Published in AAPG’s Search and Discovery, as contribution #70272, 28 June 2017

NM Victor, JH Ausubel, R Boswell, J Goodman, YC Beaudoin, SR Dallimore,. Beaudoin YC, Dallimore SR, and Boswell R. Potential Implications for Future Energy Systems (PDF) [external link]. Chapter 1 in Frozen Heat: UNEP Global Outlook on Methane Gas Hydrates. United Nations Environment Programme, GRID-Arendal : 10–26 2014

JH Ausubel. Self-sinking capsules to investigate Earth’s interior and dispose of radioactive waste (PDF). Seminar Presentation 26 July 2011, Woods Hole Oceanographic Institution Program of Study in Geophysical Fluid Dynamics. 2011

JH Ausubel. Generations of methane (PDF) [external link]. EPRI J : 2010 methane, hydrogen

JH Ausubel. Brian Boucher (ed.). Natural gas and the jack rabbit (PDF). Representative American Speeches 2008-2009 - The Reference Shelf 81 (6): 2009 Natural gas

IK Wernick. Global Warming and the Industrial System (PDF). International relations and security network (ISN) Energy and the Environment Series 11pp 2007

JH Ausubel. Renewable and nuclear heresies (PDF). Int J Nucl Governance, Econ Ecol 1 (3): 229–243 2007 nuclear, renewable, decarbonization, electricity, environmental impact, energy, nuclear power

JH Ausubel. The future environment for the energy business (PDF). APPEA Journal : 487–495 2007 energy, energy business, decarbonization, ZEPPs, green strategy, carbon dioxide hydrogen, co2

JH Ausubel. Big green energy machines (PDF). The Industrial Physicist 10 (5): 20–24 2004 Energy, electric power, zepp, zero emissions power plant, carbon dioxide, co2, liquid hydrogen

JH Ausubel. Where is Energy Going? (PDF). The Industrial Physicist 6 (1): 16–19 2000 The essay had appeared in Italian in the special millennial edition of the Italian financial newspaper, Il Sole/24 Ore, on 17 November 1999; also in Italian as Benvenuti nel millennio nuclear, pp.163-168 in Duemila: Verso una societa aperta, M. Moussanet, ed., Il Sole 24 Ore, Milano, 2000. Energy, natural gas, nuclear, climate, emissions, carbon dioxide, co2, decarbonization

JH Ausubel. Productivity, Electricity, Science: Powering a Green Future (PDF). The Electricity Journal 9 (3): 54–60 1996 energy, electric power

JH Ausubel. Technical Progress and Climatic Change Energy Policy 23 (4/5): 411–416 1995 Also pp. 501-512 in Integrated Assessment of Mitigation, Impacts, and Adaptation to Climate Change, N Nakicenovic, WD Nordhaus, R Richels, and FL Toth (eds), International Institute for Applied Systems Analysis, Laxenburg, Austria, 1994. climate, energy, natural gas, decarbonization, hydrogen, carbon dioxide, co2

JH Ausubel. Mitigation and Adaptation for Climate Change: Answers and Questions The Bridge 23 (3): 15–30 1993 Also pp. 557-584 in Costs, Impacts, and Benefits of CO2 Mitigation, Y. Kaya, N. Nakicenovic, W.D. Nordhaus, and F.L. Toth, eds., International Institute for Applied Systems Analysis, Laxenburg, Austria, 1993. climate, energy, carbon dioxide, decarbonization

JH Ausubel. A Second Look at the Impacts of Climate Change (PDF). American Scientist : 210–221 1991 climate, energy, natural gas, decarbonization, hydrogen, carbon dioxide, co2

JH Ausubel. Does Climate Still Matter? Nature : 649–652 1991 innovations, technology, climate adaptation, climate impact, climatic shifts, population, consumption, agriculture

JH Ausubel. Energy and Environment: The Light Path Energy Systems and Policy : 181–188 1991 Energy, natural gas, nuclear, climate, emissions, carbon dioxide, co2, decarbonization, dematerialization, hydrogen

Ausubel JH. Hydrogen and the Green Wave (PDF). The Bridge 20 (1): 17–22 1990

JH Ausubel, A Gruebler, N Nakicenovic. Carbon Dioxide Emissions in a Methane Economy (PDF). Climatic Change : 245–263 1988 Energy, electric power, natural gas, carbon dioxide, co2, hydrogen

RW Kates, JH Ausubel, M Berberian (eds). Climate Impact Assessment [external link]. SCOPE : 625 1985

RW Kates, JH Ausubel, M Berberian (eds.). Climate Impact Assessment, SCOPE 27 (PDF). Climate Impact Assessment, SCOPE 27 625 pp. 1985

JH Ausubel. Historical Note [on the issue of Carbon Dioxide and Climate Change], in Changing climate: Report of the carbon dioxide assessment committee, annex 2 (PDF). National Academy Press, Washington D.C 1983 climate, decarbonization, hydrogen, carbon dioxide, co2

JH Ausubel, WD Nordhaus. A review of estimates of future carbon dioxide emissions in Changing climate: Report of the carbon dioxide assessment committee [external link]. National Academy Press, Washington DC 1983 climate, decarbonization, hydrogen, carbon dioxide, co2

I Stahl, JH Ausubel. Estimating the future input of fossil fuel CO2 into the atmosphere by simulation gaming (PDF) [external link]. IIASA Working Paper : 29 1981 climate, decarbonization, hydrogen, carbon dioxide, co2

JH Ausubel. A framework for scenario generation for CO2 gaming (PDF) [external link]. IIASA Working Paper : 49 1981 climate, energy, decarbonization, hydrogen, carbon dioxide, co2

JH Ausubel. CO2: an introduction and possible board games (PDF) [external link]. IIASA Working Paper : 34 1980 climate, energy, decarbonization, hydrogen, carbon dioxide, co2, games

JH Ausubel, LW Lathrop, I Stahl, JM Robinson. Carbon and climate gaming (PDF) [external link]. IIASA Working Paper : 19 1980 climate, energy, decarbonization, hydrogen, carbon dioxide, co2, games

JH Ausubel, AK Biswas. Climatic constraints and human activities: Introduction and overview  (PDF) [external link]. IIASA Working Paper : 18 1980 Climate

JH Ausubel. Climatic change and the carbon wealth of nations (PDF) [external link]. IIASA Working Paper : 54 1980 Climate

JH Ausubel, AK Biswas. Economics in the air: an introduction to economic issues of the atmosphere and climate (PDF) [external link]. IIASA Working Paper : 50 1980 Climate, economy, energy, decarbonization, hydrogen, carbon dioxide, co2

JH Ausubel. Executive Summary and Synthesis chapter in Changing climate: Report of the carbon dioxide assessment committee (PDF). National Academy Press, Washington D.C 1983