Human action famously transforms the Earth and its biosphere and geosphere.1 While most literature consider plowing, burning, debris, and other products and by-products of our activities, direct effects of changing human biomass might merit further study. Humans are now the dominant terrestrial vertebrate, composing about 1/3 of land vertebrate biomass, which translates to 1/10 of total vertebrate biomass.2 The other terrestrial 2/3 consists nearly entirely of livestock kept by humans for food. Non-domesticated land vertebrates, from shrews to elephants to swallows, form a mere 3%. Human and domestic animal sequences, commonly detected in environmental DNA (eDNA) metabarcoding studies, are routinely excluded from analysis. Here, we hypothesize that extending eDNA analysis to include human and domesticated animal eDNA (hdaDNA) will provide insight into present-day and potentially historical human impacts on the biosphere (Figure 1). We think the distribution and abundance of hdaDNA are features of the Anthropocene worthy of study.

The growing field of eDNA has shown that the presence and relative abundance of animal species can be assessed by analyzing species-specific DNA in environmental samples.3 Most work to date has been done with aquatic eDNA as bioassays of the Anthropocene. The Innovation 4(1), 100356.

Human and domesticated animal environmental DNA as bioassays of the Anthropocene

David S. Thaler,1,2,3 Jesse H. Ausubel,2,3 and Mark Y. Stoeckle2,3

1Biozentrum, University of Basel, CH-4056 Basel, Switzerland
2Program for the Human Environment, Rockefeller University, New York, NY 10065, USA
3These authors contributed equally*

*Correspondence: davidsthaler@gmail.com

Received: June 21, 2022; Accepted: November 23, 2022; Published Online: November 25, 2022; https://doi.org/10.1016/j.xinn.2022.100356
© 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


Figure 1. Measuring human and domestic animal eDNA compared with that of resident wildlife may give insight into the human environmental footprint. As illustrated in this schematic, relative amounts of human and domestic animal eDNA, depicted in red, compared with wildlife eDNA, depicted in blue, likely differ among urban waterways (A), rural lakes, rivers, and streams (B), remote areas (C), and open ocean (D).
depth. Early evidence suggests that spiking metabarcoding PCRs with an internal standard enables quantitation and thus potentially the compilation of data from different studies. One could also do multiple single-species assays targeting human and domesticated animal species, although that could be cumbersome. DNA recovered from soil cores and sediments whose layers have been dated could theoretically allow for construction of a historical narrative of the Anthropocene. Similarly, parcels of ocean water from the present, from the recent or distant past frozen in ice or permafrost, or from ancient sources in the slowly circulating ocean conveyor could be assessed for hdaDNA. In these contexts, the importance of excluding contamination is even greater given the very low concentrations of valid eDNA in ancient DNA samples. If this could be solved, then the presence of hdaDNA in a given place and time and its subsequently changing ratio to other taxa has the potential to provide a historical index of human impact during the Anthropocene. Such an index could prove informative in various contexts, such as the interesting question of human roles in the extinction of the mammoth. Historical eDNA studies could also shed light on questions such as the Great Dying in the Americas after 1492, which may have removed more than 90% of the human population, or about 50 million persons.

Atmospheric chemist Paul Crutzen proposed the Anthropocene as a geological epoch characterized by ever-increasing human impact on Earth. Debate continues over how and when to date the start of the Anthropocene. Some scholars have argued for the initiation of agriculture more than 12,000 years ago, while others favor the mid-twentieth century when atomic bombs created fallout that spread throughout the atmosphere and oceans. Irrespective of how the Anthropocene is defined, hdaDNA provides a new window for assessing the relative human impacts in ecosystems over space and time. Future studies with titles like “Earth transformed by human action” may include the biogeography of human and domesticated animal eDNA.

REFERENCES

ACKNOWLEDGEMENTS
Thanks to Steve Giovannoni for valuable discussion.

DECLARATION OF INTERESTS
The authors declare no competing interests.