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Abstract
Relating environmental DNA (eDNA) signal strength to organism abundance requires 
a fundamental understanding of eDNA production. A number of studies have demon-
strated that eDNA production may scale allometrically—that is, larger organisms tend 
to exhibit lower mass-specific eDNA production rates, likely due to allometric scaling 
in key processes related to eDNA production (e.g., surface area, excretion/egestion). 
While most previous studies have examined intraspecific allometry, physiological 
rates and organism surface area also scale allometrically across species. We there-
fore hypothesize that eDNA production will similarly exhibit interspecific allometric 
scaling. To evaluate this hypothesis, we reanalyzed previously published eDNA data 
from Stoeckle et al. (ICES Journal of Marine Science, 78(1), 293–304, 2021) which 
compared metabarcoding read count to organism count and biomass data obtained 
from trawl surveys off the New Jersey coast. Using a Bayesian model, we empiri-
cally estimated the value of the allometric scaling coefficient (“b”) for Northwestern 
Atlantic bony fishes to be 0.77 (credible interval = 0.64–0.92), although our model 
failed to converge for Chondrichthyan species. We found that integrating allometry 
significantly improved correlations between organism abundance and metabarcod-
ing read count relative to traditional metrics of abundance (density and biomass) for 
bony fishes. Although substantial unexplained variation remains in the relationship 
between read count and organism abundance, our study provides evidence that 
eDNA production may scale allometrically across species in some contexts. Future 
studies investigating the relationship between eDNA signal strength and metrics of 
fish abundance could potentially be improved by accounting for allometry; to this end, 
we developed an online tool that can facilitate the integration of allometry in eDNA/
abundance relationships.
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1  |  INTRODUC TION

A consensus is emerging that the relationship between the amount 
of DNA in an environment (environmental DNA, or “eDNA”) tends to 
be positively correlated with the abundance of organisms within that 
environment (Rourke et al., 2021; Yates et al., 2019; Yates, Cristescu, 
& Derry, 2021). The concentration of eDNA can therefore provide 
information on the “unseen” abundance of organisms and could rep-
resent a powerful tool for understanding aquatic community com-
position. However, studies in natural ecosystems exhibit substantial 
variation in the strength of the correlation between eDNA concen-
tration and estimated organism abundance, likely because a number 
of abiotic and biotic variables can affect steady-state concentrations 
of eDNA (Yates, Cristescu, & Derry, 2021). Improving the capacity to 
infer abundance from eDNA data therefore requires a better under-
standing of the “ecology” of eDNA—that is, factors influencing the 
production, transport, and degradation of nucleic acids in the envi-
ronment (Barnes & Turner, 2016; Yates, Cristescu, & Derry, 2021).

A number of previous studies have demonstrated that eDNA pro-
duction likely scales allometrically with body size; that is, as the body 
mass of an individual increases, their mass-specific eDNA production 
rate (i.e., production rate of eDNA per gram of body mass) tends 
to decline (Maruyama et al.,  2014; Stoeckle et al.,  2021; Takeuchi 
et al., 2019; Yates, Glaser, et al., 2021; Yates, Wilcox, et al., 2021). 
The primary mechanisms driving this relationship are likely related to 
long-recognized allometric scaling in the relationship between body 
mass and surface area (Meeh, 1879; O'Shea et al., 2006), as well as 
allometric scaling in key physiological rates related to eDNA pro-
duction (e.g., consumption, excretion, egestion) (Allegier et al., 2015; 
Post et al., 1999; Vanni & McIntyre, 2016; Yates, Glaser, et al., 2021). 
Most of the previous studies examining allometry in eDNA produc-
tion, however, have focused on intraspecific allometry, quantifying 
how eDNA production changes as body mass increases within a 
species using single-species assays that estimate the concentra-
tion of eDNA in an environment using quantitative PCR (qPCR) or 
digital droplet PCR (ddPCR) methods. However, metabolic theory 
postulates that allometry in key physiological rates also operates 
at an interspecific scale; organisms from small-bodied species have, 
on average, higher physiological rates (Allegier et al., 2015; Brown 
et al., 2004; Vanni & McIntyre, 2016) and the relationship between 
body mass and surface area also exhibits interspecific allometry 
(Meeh, 1879; Reynolds, 1996). Environmental DNA production may 
therefore be affected by allometry on an interspecific basis, as well 
(Yates, Glaser, et al., 2021). However, the extent to which the dis-
tribution of eDNA varies interspecifically with organism abundance 
and body mass remains relatively understudied.

Metabarcoding approaches, when applied to eDNA samples, 
can be used to quantify community species composition (Taberlet 
et al., 2012). When metabarcoding techniques are applied to eDNA 
samples, primers targeting genomic regions that tend to be conserved 
across taxonomic groups are used to amplify variable interven-
ing regions. The resulting amplicons are then sequenced on high-
throughput sequencing (HTS) platforms to produce millions of reads 

that are compared to a reference database for taxonomic identifica-
tion (Cristescu,  2014; Taberlet et al.,  2012). However, relationships 
between metabarcoding sequence count and organism abundance 
are likely to be weaker than for single-species approaches that di-
rectly quantify template eDNA concentrations due to differences in 
amplification efficiency across taxonomic groups and biases associ-
ated with community composition (Kelly et al., 2019; Piñol et al., 2019; 
Yates, Cristescu, & Derry,  2021). Nevertheless, consistent positive 
correlations between metabarcoding data and relative species abun-
dance have been observed in controlled and natural settings (Evans 
et al., 2016; Hanfling et al., 2016; Lawson Handley et al., 2019), high-
lighting its potential utility to infer abundance even if only qualitative 
or relative abundance comparisons are possible (Kelly et al.,  2019; 
Lamb et al., 2019; Rourke et al., 2021; Yates, Cristescu, & Derry, 2021).

Relationships between quantitative eDNA metabarcoding data 
and organism abundance could potentially be further strengthened 
by applying our growing understanding of the “ecology of eDNA” in 
natural ecosystems. By integrating eDNA dynamics into modeling 
efforts, researchers may be able to account for some of the unex-
plained variation in relationships between eDNA signal strength es-
timated by metabarcoding and organism abundance in nature (Yates, 
Cristescu, & Derry, 2021). A better understanding of processes in-
volved in eDNA production, for example, could help improve our un-
derstanding of the distribution of eDNA observed among species in 
natural ecosystems.

Metabarcoding datasets derived from sampling natural ecosys-
tems that are paired with simultaneous observational estimates of 
organism abundance represent a valuable opportunity to empirically 
estimate how eDNA production scales across species in natural eco-
systems. Here, we analyzed data previously published in Stoeckle 
et al.  (2021), which paired eDNA metabarcoding data with tradi-
tional trawl data from the coast of New Jersey (Northwest Atlantic) 
and empirically estimated the rate at which recovered metabarcod-
ing reads from eDNA samples was impacted by both the numerical 
abundance and body mass of species. We applied both frequentist 
and Bayesian modeling techniques to empirically estimate the in-
terspecific allometric scaling coefficient (and quantify uncertainty 
around it) for eDNA production for two groups of fishes represented 
in the dataset: Northwestern Atlantic marine Osteichthyans (bony 
fishes) and Chondrichthyans. We also developed an online tool to 
facilitate the integration of allometry in eDNA/abundance relation-
ships. Using our tool, researchers can explore how accounting for 
allometry improves correlations between quantitative eDNA data 
and organism abundance.

2  |  MATERIAL S AND METHODS

2.1  |  Trawl survey and eDNA collection, extraction, 
and analysis

For a full description of methodologies used to collect the data, 
please refer to the original manuscript (Stoeckle et al., 2021). In 
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    |  3YATES et al.

brief, eDNA sampling was paired with trawl data collected off the 
northeastern coast (New Jersey) of the United States for 1-week pe-
riod in January, June, August, and November in 2019. A minimum of 
10 “tows” per three depth intervals for each sampling period were 
conducted, with a total of 30 traditional trawl samples collected in 
January and 39 in the other 3 months. For each tow, species iden-
tification, number of individuals, and total-mass-per species data 
were collected. Species accumulation curves (SACs) were used to 
assess whether trawling captured most available species; SACs 
were calculated for each month using the R package vegan (Oksanen 
et al., 2020). Visual saturation of SACs indicated that trawling likely 
captured most available species (Appendix S1, section 1.0).

For each monthly sampling period, two 1 L water samples (one 
surface and one bottom-depth sample) were collected immediately 
prior to trawl samples at 10 selected tow sites, for a total target of 
20 eDNA samples per sampling month period. Negative tap-water 
controls were filtered using the same equipment each day of sam-
pling. However, due to bottle breakage and equipment failure, an 
average of 17 water samples were collected each monthly sampling 
period. Water samples were maintained on ice and then placed in 
a −20°C freezer within 24 h of collection, after which they were 
thawed and filtered using a 0.45 μm nitrocellulose filter, which was 
stored in a −80°C freezer. DNA was subsequently extracted from 
the filters using a modified protocol for the PowerSoil kit (Qiagen) 
(as described in Stoeckle et al., 2020) and extracts were kept frozen 
prior to library preparation.

DNA processing and bioinformatics were conducted as de-
scribed in Stoeckle et al. (2020) and Stoeckle et al. (2021). Separate 
primer sets that target a ~106-bp segment on the mitochondrial 12 S 
V5 region were used to amplify Northwestern Atlantic bony fishes 
(Osteichthyes) and Cartilaginous fishes (Chondrichthyes); each eDNA 
sample was amplified twice: once with bony fish primer set and once 
with Cartilaginous fish primer set. Bony and Cartilaginous fish ampli-
fications were indexed separately. Sequencing was performed on an 
Illumina MiSeq for a total of 136 samples (Chondrichthyan and bony 
fishes per field sample) and 79 negative controls. Bioinformatics 
analysis was conducted using DADA2 (Callahan et al.,  2016), with 
taxonomic assignments based on a 100% amplicon sequence variant 
(ASV) match to a 12S reference library of regional fishes (Stoeckle 
et al., 2017).

2.2  |  Trawl and eDNA data curation

As in Stoeckle et al. (2021), monthly catch weights were normalized 
by converting catch data to per-tow values; this facilitated compari-
sons across sampling periods with different total numbers of tows. 
Read numbers were normalized across seasons with different sam-
pling effort (i.e., total number of collected samples) by converting 
read counts to per-sample values and multiplying by twenty. All 
comparisons were done using monthly trawl weights (sum of nor-
malized trawl catches) and monthly eDNA reads (sum of normalized 
read counts).

Data for Northwestern Atlantic Cartilaginous and bony fishes 
were analyzed separately for both biological and molecular analy-
sis reasons. First, these two groups have fundamentally different 
morphological and physiological characteristics that could affect 
relative eDNA production rates. The surface of Chondrichthyans, 
for example, is characterized by distinct scale morphology and thin-
ner mucous layers compared to bony fishes (Ankhelyi et al., 2018), 
they possess a distinct excretory system (retention of urea, rectal 
gland, etc.) (Evans,  2010), and they possess morphologically dis-
tinct digestive systems (e.g., spiral valve intestines) (Wetherbee & 
Gruber,  1993). Furthermore, Chondrichthyan DNA was amplified 
using a different primer set; variation in amplification efficiency be-
tween the different primer sets could also impact relative recovery 
of metabarcoding reads. Collectively, differences in relative eDNA 
production rates and metabarcoding read recovery could signifi-
cantly affect the estimation of allometric scaling in eDNA produc-
tion if data from both taxonomic groups are pooled, particularly 
given that Chondrichthyan species represented in this dataset were, 
on average, substantially larger-bodied than bony fishes (mean body 
size  =  11.72 vs. 0.63 kg, respectively). Sea lampreys (Petromyzon 
marinus) were also excluded from both datasets due to their ancient 
divergence from both taxonomic groups (Gess et al., 2006).

For our analyses, we only considered data for fish species that 
were detected by eDNA sampling in at least 1 month of the year 
(i.e., species that were only ever caught in trawls were excluded). 
Such species were excluded from our analysis because we could not 
distinguish whether there was no detectable eDNA for these taxa 
at a given site, or whether the eDNA assay was not capable of de-
tecting these specific taxa (due to potential primer mismatches, etc.). 
Among bony fishes, Northern Searobin (Prionotus carolinus) repre-
sented a significant outlier datapoint, with relative biomass catch 
in the month of August seven times higher than the next highest-
catch bony fish species across all sampling periods (111 kg-per-tow 
vs. 16 kg-per-tow, respectively). Preliminary analyses demonstrated 
that this singular datum was potentially driving observed relation-
ships and allometric scaling coefficient estimates. The relationship 
between metabarcoding and original eDNA template concentra-
tion can potentially exhibit high residual error due to differences in 
amplification efficiency across taxa (Elbrecht & Leese, 2015; Kelly 
et al., 2019; Piñol et al., 2015). Similarly, catch per unit effort (CPUE) 
can also be a poor index of organism abundance under some circum-
stances (e.g., hyperstability or hyperdepletion) (Harley et al., 2001; 
Hubert et al., 2012; Rose & Kulka, 1999). Across a large number of 
datapoints, correlations between these indexes (metabarcoding 
reads and CPUE and biomass per unit effort [BPUE]) and the under-
lying variables they track (eDNA template concentration and organ-
ism abundance) are likely to be positive in many scenarios. However, 
a single outlier datapoint exhibiting a disproportionate effect on 
the analysis could result from stochastic measurement error asso-
ciated with index variables in relation to the corresponding indica-
tor variables. For the analyses presented in the main text, Northern 
Searobin were therefore excluded; results with this species retained 
are presented in Appendix S1 (section 2.0) for comparison.
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4  |    YATES et al.

2.3  |  Statistical analyses

2.3.1  |  Integrating allometry into 
metrics of abundance

Environmental DNA production was assumed to scale allometrically 
according to the following formula:

Where I = eDNA production rate, M = the individual body mass of an 
organism, I0 = a normalization constant, and b = an allometric scaling 
coefficient.

Allometry was integrated into metrics of fish abundance using 
the following formula:

Where APTi = allometrically scaled abundance per tow for the ith spe-
cies, xb

i
= the mean individual body mass of the ith species, Ni =  the 

mean capture per tow of the ith species, and b = the interspecific al-
lometric scaling coefficient. Note that a value of 0 for b corresponds 
exactly with species counts per tow, and a value of 1 for b corresponds 
exactly with species biomass per tow.

We lacked size data for each individual fish, with only total bio-
mass per species and species counts available from tow data. As a 
result, we employed the simplifying assumption that each individ-
ual organism could be represented by the mean mass for that taxon 
(i.e., biomass per tow [BPT] divided by individuals per tow [IPT]). 
Although this simplifying assumption may not be suitable across 
all ecosystems, it is likely a reasonable approximation for our study 
system. First, in our dataset interspecific variation in body mass 
is much greater than intraspecific variability in body mass (mini-
mum mean mass = ~1 g [Bay anchovy, Anchoa mitchilli], maximum 
mean mass  =  44 kg [Atlantic sturgeon, Acipenser oxyrhynchus]). 
Furthermore, simulations indicate that the level of bias introduced 
by this assumption is likely small (Appendix S1, section 3.0). Under a 
uniform distribution with body mass variation ranging from 1 to 100 
(largest individuals are 100× larger than the smallest) we found that 
mean percent bias was <5%. This simulated uniform distribution has 
much higher variation than our observed data. We were also able to 
generate some individual body mass distribution data by examining 
tows where only one individual was captured. For all 15 species for 
which individual data was available for >10 individuals across sam-
pling months interspecific variation was substantially less than in our 
simulated dataset (Appendix S1, section 2.0). However, it is import-
ant to note that incorporating individual weights may be more im-
portant in study systems where interspecific diversity in body mass 
is low or where there are small numbers of species in which there is 
considerable overlap in cohorts within habitats (e.g., small freshwa-
ter streams).

2.3.2  |  Frequentist model

To estimate the optimal value of the scaling coefficient using fre-
quentist regression approaches, we repeated methodologies used 
in Yates, Glaser, et al.  (2021) and Yates, Wilcox, et al.  (2021). For 
each taxonomic group (Northwestern Atlantic bony fishes and 
Chondrichthyans) we built linear models of eDNA metabarcoding 
read counts as a function of allometrically scaled abundance per tow 
(APTb) with scaling coefficient values (b) ranging from 0.00 to 1.00 
by 0.01 intervals. We then extracted Akaike Information Criterion 
(AIC; Akaike, 1974) for each model; we predict that the distribution 
of AIC values corresponding to values of b between 0.00 and 1.00 
should follow an approximate concave parabolic distribution, with a 
“best-fit” (i.e., lowest-AIC) scaling coefficient value occurring at the 
“vertex” of this approximate parabola (Yates, Glaser, et al.,  2021). 
AIC and model RMSE values were compared for the “optimal” scal-
ing coefficient model and two traditional metrics of organism abun-
dance: density (i.e., individuals-per-tow, or “IPT”) and biomass (i.e., 
biomass per tow, or “BPT”).

Visual inspection of biplots indicated residual heteroscedasticity 
in quantitative eDNA data as APTb increased. As a result, we used 
the gls function from the package nlme to fit a generalized least-
squares model that utilized the varPower variance function to fit a 
heteroscedastic residual error term associated with the APTb vari-
able. This function cannot tolerate APTb values equal to zero—as a 
result, a value of 0.001 was added to all zero values for “individuals-
per-tow.” To evaluate the significance of the heteroscedastic error 
term, AIC values for the “optimal” APTb, IPT, and BPT were com-
pared to models without the additional residual variance function. 
All analyses were conducted in R v. 4.0.4 (R Core Team, 2019).

2.3.3  |  Bayesian model

For Bayesian analysis, we considered the regression model below 
where c0 is the regression intercept, APTb follows the form in 
Equation (2), c1 is the regression slope, and ε is the variance:

We built separate models for Northwestern Atlantic bony fishes 
and Cartilaginous fishes and implemented Markov Chain Monte 
Carlo (MCMC) simulations in JAGS (Plummer,  2003) using the rjags 
(Denwood,  2016) and jagsUI (Kellner,  2021) packages in R. For each 
model, we ran three parallel chains for 5,000,000 total iterations, dis-
carding the first 50,000 for burn-in and thinning to every 500th itera-
tion to estimate the posterior distribution for each parameter and derive 
95% Bayesian Credible Intervals (BCI). We assessed convergence based 
on a value of ̂R < 1.1 (Gelman & Rubin, 1992). We used uniform priors 
for the latent b (0–1 for bony fishes and 0–2 for Chondrichthyans based 
on frequentist modeling results; see Results), intercept (0–106), beta 

I = I0
∗
M

b

APTi =

(

x
b

i

)

∙ Ni

(1.3)Read count ∼ Norm

(

c0 + APT
b
× c1, �

)
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    |  5YATES et al.

(0–105), and ε (0–103 terms) parameters and initial values estimated 
from the frequentist regression models. An additional heteroscedastic 
residual error term was fitted that allowed residual error to vary as a 
power function of APTb (uniform prior = 0–1), with the significance of 
the heteroscedastic error term evaluated by comparing model DIC to a 
model lacking the heteroscedastic variance term.

3  |  RESULTS

3.1  |  Northwestern Atlantic bony fishes

Northwestern Atlantic Bony fish species' IPT and BPT were sig-
nificantly and positively correlated with eDNA metabarcoding read 
counts (Table 2, Figure 1). The distribution of AIC values from the 
frequentist models exhibited the predicted approximate upward par-
abolic distribution (Figure 2). The “optimal” AIC value corresponded 
to a scaling coefficient point estimate (b) of 0.78 and represented a 
significant improvement over IPT and BPT (∆AIC = 71.20 and 8.26, 
respectively). Similarly, APT0.78 exhibited substantially lower Root 
Mean Square Error (Table 1). Values for b between 0.69 and 0.88 had 
AIC values within two of the “optimal” AIC value. In all cases, includ-
ing a heteroscedastic residual error term associated with fish abun-
dance significantly improved model fit (∆AIC > 100 for all models).

Values from the frequentist model with a scaling coefficient of 
0.78 were used to initialize parameter values for the Bayesian model, 
although model results were largely unaffected by initial parameter 
values. The Bayesian model converged successfully and we derived a 
point estimate for the scaling coefficient of 0.77 with a 95% credible 
interval of 0.64–0.92 (Figure  S1), exhibiting close correspondence 
to the frequentist approach (Figure 2). Similar to the above analysis, 
inclusion of a power-function heteroscedastic error term associated 
with APT significantly improved model fit (∆DIC = 104.2).

Analyses above removed Northern Searobin, which was a high 
leverage outlier datum. Analyses of bony fish data with Northern 
Searobin included still found evidence of allometric scaling; the 
point estimates for the scaling coefficient using frequentist ap-
proaches and Bayesian methods were 0.80 and 0.77 (Bayesian esti-
mate credible interval = 0.57–0.97), respectively (see Appendix S1, 

section 3.0). Allometric scaling in eDNA production was therefore 
still observed/inferred regardless of whether this outlier species was 
included.

3.2  |  Chondrichthyes

Northwest Atlantic Chondrichthyan species' BPT was significantly 
and positively correlated with eDNA metabarcoding read counts, 
although IPT was not (see Table 2, Figure 3). The distribution of AIC 
values from the frequentist models with scaling coefficient values 
ranging from 0.00 to 1.00 did not exhibit the predicted upward 
parabolic distribution; AIC values instead declined as scaling coef-
ficients approached BPT (b = 1.00). We therefore explored the ef-
fect of scaling coefficient values >1.00. The predicted “approximate” 
upward parabolic distribution of AIC values was only observed when 
scaling coefficient values were extended to 2.00 (Figure 4). The “op-
timal” AIC value corresponded to a scaling coefficient value of 1.49, 
implying that large-bodied Chondrichthyans had higher mass-specific 
eDNA production rates than smaller Chondrichthyans; this model rep-
resented a significant improvement over IPT and BPT (∆AIC = 11.75 
and 3.30, respectively), with lower associated RMSE values (Table 2). 
In all cases, including a heteroscedastic residual error term associ-
ated with Northwest Atlantic Chondrichthyan abundance signifi-
cantly improved model fit (∆AIC > 50 for all models).

Values from the frequentist model with a scaling coefficient of 
1.49 were used to initialize parameter values for the Bayesian model. 
We derived a point estimate for the scaling coefficient from the 
Bayesian model of 0.94, a considerable discrepancy from the fre-
quentist model (Figures  4 and S2). The Bayesian model, however, 
did not converge successfully regardless of initialized parameter val-
ues (i.e., ̂R > 1.10), with inconsistent posterior distributions that were 
variable between chains (Figure S2).

4  |  DISCUSSION

We found that eDNA shedding rates scaled allometrically 
(i.e., larger fish produce less eDNA per unit body mass) across 

F I G U R E  1  Linear regressions for bony fish species' eDNA metabarcoding read count (thousands) and three metrics of abundance: 
(a) Individuals-per-tow, (b) Allometricallyscaled abundance per tow (b = 0.77) (APT0.77), and (c) Biomass per tow. Note that the scaling 
coefficient estimate represented in figure (b) was the point estimate derived from the Bayesian model
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6  |    YATES et al.

Northwestern Atlantic bony fish species in a natural system. This 
is an important observation because when researchers corre-
late quantitative eDNA data with traditional metrics of organism 
abundance (e.g., numerical abundance or biomass) they make im-
plicit assumptions about the value of the allometric scaling coef-
ficient (b); correlating eDNA data with density assumes a scaling 
coefficient value of “0” and with biomass assumes a scaling coef-
ficient value of “1.” Further research is needed to test the gener-
ality of our findings across systems, but this work demonstrates 
(1) that it is possible to infer interspecific allometric scaling co-
efficients from large observational datasets of paired eDNA me-
tabarcoding and animal capture data in natural ecosystems and 

(2) that incorporating an understanding of allometric scaling may 
strengthen correlations between read count data and organism 
abundance. Although interspecific allometry in eDNA produc-
tion should also be experimentally validated under controlled 
conditions, large-scale observational datasets represent valuable 
opportunities to explore the fundamental “ecology” of eDNA pro-
duction in natural ecosystems. Future large-scale studies should 
similarly attempt to infer whether allometrically scaling processes 
may be affecting the distribution of eDNA in natural ecosystems.

We note, however, that our findings herein are taxa and 
ecosystem-specific; our findings apply only to Northwestern 
Atlantic bony fish species, and the extent to which they can be gen-
eralized to other taxonomic groups and/or ecosystems is presently 
unknown. We posit that our findings are likely to be generalizable 
to other study systems because the inferred value of b is close to 
expected values based on theory. However, more studies examining 
relationships between eDNA, organism abundance, and allometry 
are required before broad generalizations can be made. In particular, 
a meta-analysis of published datasets could elucidate the contexts in 
which allometry is likely to impact pseudo-steady-state concentra-
tions of eDNA in an environment. To this end, we encourage future 
studies examining the relationships between quantitative eDNA 
data and organism abundance to integrate allometry; any study that 
has both numerical abundance and biomass data can employ the 
methods presented herein. At the very least, we encourage studies 
to report data and correlations with eDNA for both numerical abun-
dance and biomass, rather than just reporting only the traditional 
abundance metric that “fits best” with quantitative eDNA data (i.e., 
produces the highest r2 value).

To further facilitate the integration of allometry into other eDNA/
abundance studies, we developed an online tool (https://natio​nalge​
nomic​scent​er.shiny​apps.io/Inter​speci​ficAS​M/) that allows users to 
upload their own data and explore how different assumed values 
of “b” change the association between ASM-corrected quantitative 
eDNA data and metrics of abundance and biomass based on conven-
tional sampling. This tool can accommodate data from both intraspe-
cific (e.g., eDNA concentrations assess by qPCR for a single species 

F I G U R E  2  Distribution of AIC values for linear regressions 
between bony fish abundance and eDNA metabarcoding read 
count, corresponding to scaling coefficients ranging from 0.00 to 
1.00. The dotted portion of the curve denoted with vertical dotted 
lines denotes the range of models with ΔAIC < 2 of the “optimal” 
scaling coefficient model. The black vertical line represents the 
best-fit scaling coefficient estimated using frequentist approaches, 
and the red vertical line represents the best-fit scaling coefficient 
estimated using the Bayesian model

Mass scaling coefficient (b)
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Model F p AIC ΔAIC RMSE

IPT 12.12(1158) <0.001 4090.61 71.20 121575.1

BPT 56.09(1158) <0.001 4027.67 8.26 104888.7

APT0.78 78.17(1158) <0.001 4019.41 - 94726.4

Note: ΔAIC represents the difference in AIC value between APT0.78 And the IPT and BPT models. 
Note that these results are for analyses in which northern Searobin was excluded.

TA B L E  1  Frequentist results for 
generalized least-squares regressions 
between eDNA metabarcoding read count 
and individuals per tow (IPT), biomass 
per tow (BPT), and allometrically scaled 
abundance per tow (APT, b = 0.78) for 
bony fish

Model F p AIC ΔAIC RMSE

IPT 1.76(1,35) 0.192 994.78 11.75 593992.7

BPT 14.25(1,35) 0.001 986.33 3.30 360878.7

APT1. 49 35.15(1,35) <0.001 983.03 – 284065.0

Note: ΔAIC represents the difference in AIC value between APT1.49 And the IPT and BPT models.

TA B L E  2  Frequentist results for 
generalized least-squares regressions 
between eDNA concentration and 
individuals per tow (IPT), biomass per 
tow (BPT), and allometrically scaled 
abundance per tow (APT, b = 1.49) for 
Chondrichthyans
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across multiple environments) and interspecific (e.g., quantitative 
metabarcoding read counts for multiple species) studies. Users can 
upload quantitative eDNA data, numerical abundance, and mean 
population/species body mass data; in this case, the tool will assume 
that organisms from the same biological replicate/population/spe-
cies (depending on study system) have identical body mass values (as 
herein). Alternatively, users can provide individual body mass data 
derived from a subsample or complete census of individuals from a 
biological replicate/population/species, in which case the tool will 
calculate “allometrically scaled mass” using the following formula (as 
in Yates, Glaser, et al., 2021; Yates, Wilcox, et al., 2021):

Where 
∑NS

i=1

�

massb
Si

�

 is the sum of the individual mass values raised to 
the power of a scaling coefficient (b) in the subset or census of individ-
uals used to assess biological replicate/population/species size struc-
ture, NS is the number of fish captured in the subset/census, and ̂N is 
the estimated population size. This methodology assumes that the size 
structure assessment was representative of the biological replicate/
population/species when a subset of individuals was sampled.

Overall, we found empirical evidence that the value of b for 
Northwestern Atlantic bony fish eDNA production corresponds 
closely to theoretical expectations based on whole-body surface 
area allometry and allometry in key physiological and metabolic 
rates. Stoeckle et al.  (2021) investigated the effect of allometry 
on eDNA production by fixing the value of b in their “allome-
tric abundance index” to 2/3 based on these theoretical expec-
tations; this appears to have been a reasonable approximation, 
given that our empirically derived point estimate for the value 
of b for Northwestern Atlantic bony fishes corresponded to 0.78 
with credible intervals that overlapped with 2/3, although it is im-
portant to note that this is likely a “conservative” estimate of the 
credible interval (i.e., intervals may be larger) due to the fact that 
the independent variable in the analysis (organism abundance) was 
also estimated with error, rather than experimentally controlled 
(e.g., as in a mesocosm experiment). Nevertheless, the point es-
timate and credible intervals we obtained corresponded approxi-
mately to allometric scaling rates observed for body surface area 
in fish (b ~ 0.60–0.65) (O'Shea et al., 2006), metabolic rates (e.g., 
b  =  0.75) (Brown et al.,  2004), and for key physiological rates 
like consumption/excretion/egestion (Allegier et al.,  2015; Post 
et al.,  1999; Vanni & McIntyre,  2016; Wiff & Roa-Ureta,  2008). 
Notably, credible intervals also overlapped with a recently derived 
empirical estimate of 0.89 (0.82–0.99) for the value of the meta-
bolic scaling coefficient in fishes (Jerde et al., 2019).

Furthermore, while common Bayesian modeling packages can 
provide the modeling flexibility to directly estimate non-linear 
model parameters and their error, they are also useful because “in-
formative priors” can be used to shape models when insufficient 
data are available to directly estimate coefficients. If allometry in 
eDNA production is validated more broadly, smaller-scale studies 
that lack the sample size to accurately estimate scaling coefficients 

ASM =

∑NS

i=1

�

massb
Si

�

NS

∙ ̂N

F I G U R E  3  Linear regressions for Chondrichthyan species' eDNA metabarcoding read count (thousands) and three metrics of abundance: 
(a) Individuals per tow, (b) Allometrically scaled abundance per tow (b = 1.49) (APT1.49), and (c) Biomass per tow. Note that the scaling 
coefficient estimate represented in figure (b) was the point estimate derived from the frequentist model as our Bayesian model failed to 
converge
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F I G U R E  4  Distribution of AIC values for linear regressions 
between Cartilaginous fish abundance and eDNA metabarcoding 
read count, corresponding to scaling coefficients ranging from 
0.00 to 2.00. The dotted portion of the curve denoted with 
vertical dotted lines denotes the range of models with ΔAIC < 2 
of the “optimal” scaling coefficient model. The black vertical 
line represents the best-fit scaling coefficient estimated using 
frequentist approaches; note that the Bayesian model point 
estimate was 0.94, but the model failed to converge
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directly could potentially use informative priors based on previous 
work and potentially strengthen resulting eDNA/abundance correla-
tions. We also note that the Bayesian modeling approaches utilized 
herein produced very similar point estimates to the AIC-based ap-
proaches utilized in previous studies (e.g., Yates, Glaser, et al., 2021), 
but likely provide more rigorous estimates of uncertainty around the 
b-parameter estimate.

We do note, however, that we anticipate that the value of inte-
grating allometry to abundance/eDNA concentration correlations 
will be lower with smaller metabarcoding datasets (e.g., <~15–20 
species). A number of factors (e.g., differences in PCR efficiency 
among species [Elbrecht & Leese, 2015; Leese et al., 2021], com-
munity composition [Piñol et al., 2019]) can potentially introduce 
substantial “noise” into the relationship between quantitative 
eDNA read data and organism abundance (Kelly et al., 2019; Yates, 
Cristescu, & Derry,  2021). In large datasets with adequate sam-
ple size of species (i.e., >~20 species), such “noise” may “average 
out” such that a biologically meaningful signal is detectable; in 
small datasets, stochastic idiosyncrasy in amplification efficiency 
among taxa may well “drown out” allometric effects of eDNA pro-
duction. Advances in metabarcoding that improve the relationship 
between read count and original template eDNA concentrations 
(e.g., correcting for taxa-specific amplification efficiency (Kelly 
et al.,  2019)) could potentially improve the utility of correcting 
for allometry. At the very least, however, future studies should 
explore the utility of transforming abundance data using scaling 
coefficients derived from theoretical expectations; a scaling co-
efficient value of approximately 0.66–0.75 (i.e., as predicted from 
surface area, excretion, and metabolic allometry) appears to be 
justifiable as an approximation, but its consistency and broader 
applicability across other study systems requires further study.

Understanding the physiological processes involved in eDNA 
production also has potential implications for the application of 
eDNA for monitoring. Although model predictive power was low 
overall, integrating allometry (i.e., APT0.78) helped linearize eDNA/
abundance data and significantly improved model predictive capac-
ity, as indicated by RMSE values, relative to models based on tradi-
tional metrics. The linear relationship between organism abundance 
and read count we observed was weaker than typically observed 
for single-species qPCR/dPCR approaches (Yates et al., 2019), likely 
due to (previously discussed) factors in metabarcoding that can in-
troduce “noise” in the relationship between read count and template 
eDNA concentrations (Yates, Cristescu, & Derry, 2021). Our results, 
however, suggest that the physiology of eDNA production may be 
an important consideration for metabarcoding studies attempting to 
infer relative organism abundance from eDNA read count.

Scaling factors and constants, however, may need to be spe-
cific to taxonomic/phylogenetic groups because physiological 
processes involved in eDNA production are complex and likely vari-
able across species and taxonomic groups (Sassoubre et al., 2016; 
Yates, Cristescu, & Derry, 2021). Northwestern Atlantic bony fishes 
and Chondrichthyans, for example, exhibit substantial differences 
in physiology and morphology that could impact relative eDNA 

production and, thus, cross-taxonomic allometric relationships in 
eDNA production. Similarly, physiological processes among specific 
taxa could also result in a breakdown of typical allometric relation-
ships in eDNA production. Reproductive activity (e.g., broadcast 
spawning) can result in an increase in mass-specific eDNA produc-
tion rate (Curtis et al., 2020; Takeuchi et al., 2019); accounting for 
reproductive activities during eDNA sample collection timing could 
be relevant, particularly for species that might appear as “outliers” 
with larger than expected mass-specific eDNA production rates. 
Variability in primer amplification efficiency (both within and be-
tween primer sets) might also limit inter-taxa comparisons between 
read counts and organism abundance (Elbrecht & Leese, 2015; Kelly 
et al.,  2019). Accounting for phylogeny may therefore be import-
ant when conducting such comparisons across broad taxonomic 
groups.

While Northwestern Atlantic bony fishes exhibited patterns 
corresponding to theoretical expectations, it is important to note 
that Chondrichthyans deviated substantially from predictions, with 
frequentist approaches provided a scaling coefficient estimate of 
1.49 and our Bayesian models failing to converge. While this may 
be indicative of a potential biological phenomenon warranting fur-
ther study, the more likely explanation is that we simply lacked the 
statistical sample size/power to estimate the value of the scaling 
factor from potentially “noisy” metabarcoding/trawl data; with only 
13 species and 37 datapoints, the Chondrichthyan dataset had sig-
nificantly lower representation relative to bony fish (with 56 species 
with 160 datapoints). Quantitative metabarcoding data may be par-
ticularly “noisy” given that variability among amplification efficiency 
can be common even among closely related taxa in metabarcoding 
(Elbrecht & Leese, 2015; Piñol et al., 2015). This amplification effi-
ciency variability could thus introduce potential residual error in the 
relationship between metabarcoding read count and organism abun-
dance due to imperfect correlation between final read count and the 
original template eDNA concentrations. Catch per unit effort (CPUE) 
data can also be poorly correlated with abundance for some spe-
cies and systems (Harley et al., 2001; Hubert et al., 2012; Rose & 
Kulka, 1999; Yates, Glaser, et al., 2021). As a result, error between 
our index variables (read count and CPUE/BPUE data) and under-
lying fundamental parameters (eDNA concentration and organism 
abundance), combined with small sample size, could potentially ac-
count for both the unusual results we observed for Chondrichthyans 
and the failure of our Bayesian model to converge even with model 
parameters initialized based on the frequentist model.

5  |  CONCLUSIONS AND 
RECOMMENDATIONS

Our findings demonstrate that considering the physiology of eDNA 
production may be important for the future application of eDNA 
sampling to monitor organism abundance. Understanding the con-
sistency of the effect of allometric processes on eDNA production, 
as well as conditions under which allometric patterns might emerge, 
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is crucial for evaluating the extent to which integrating allometry 
can improve eDNA/abundance correlations and, ultimately, help op-
erationalize eDNA to monitor abundance and biodiversity in natural 
ecosystems. The extent to which our findings might apply to other 
ecosystems remains unknown; a meta-analysis of other datasets 
could potentially address this consistency of the potential impact of 
allometry on eDNA production across different contexts. We there-
fore encourage future studies to consider the implicit assumptions 
regarding the physiology of eDNA production made correlating 
eDNA with species N and biomass. To this end, we encourage users 
to explore the effect of integrating allometry on the relationship 
between eDNA and organism abundance using the online tool we 
developed (https://natio​nalge​nomic​scent​er.shiny​apps.io/Inter​speci​
ficAS​M/).

We also want to re-emphasize that correlating quantitative eDNA 
data exclusively to traditional metrics of organism abundance (e.g., N 
and biomass) makes inherent assumptions regarding the physiology 
of eDNA production, regardless of whether researchers explicitly 
consider or evaluate the value of the allometric scaling coefficient 
(b) within their own study systems; comparing eDNA to N or biomass 
simply fixes the assumed value of b at 0 or 1, respectively. Future 
researchers should explicitly consider and evaluate how they might 
expect eDNA production to scale allometrically within and across 
species—is eDNA production likely to be a function of numerical 
abundance (i.e., b = 0), biomass (i.e., b = 1), or something in between 
(i.e., 0 < b > 1)? In particular, we would encourage future studies to 
consider allometry in study systems where populations or species 
exhibit substantial variation in body size distributions; allometry is 
unlikely to affect relative eDNA production rates when organisms 
exhibit similar body sizes across groups (i.e., populations or species). 
Understanding the consistency of the effect of allometric processes 
on eDNA production, as well as conditions under which allometric 
patterns might emerge, is crucial for evaluating the extent to which 
integrating allometry can improve eDNA/abundance correlations 
and, ultimately, help operationalize eDNA to monitor abundance in 
natural ecosystems.
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