Pool-Breeding
Amphibians with
Environmental DNA
Analysis

Samara Davis
GENIUS OLYMPIAD 2022

Introduction

41% of amphibian species are currently threatened with extinction 1

Lepofsky et al. compared physiological risks with climate projections ₁

Climate change severely threatens amphibians at an increasing rate 1

Amphibians are more vulnerable to the effects of climate change 2, 3, 4

- 1. "The IUCN Red List of Threatened Species." IUCN Red List of Threatened Species, www.iucnredlist.org/resources/summary-statistics.
- 2. Lertzman-Lepofsky, Gavia F., et al. "Water Loss and Temperature Interact to Compound Amphibian Vulnerability to Climate Change." Global Change Biology, vol. 26, no. 9, 2020, pp. 4868–4879., doi:10.1111/gcb.15231.
- 3. Blaustein, Andrew R., et al. "Direct and Indirect Effects of Climate Change on Amphibian Populations." Diversity, vol. 2, no. 2, 2010, pp. 281–313., doi:10.3390/d2020281.
- 4. Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of USA, 105, 11466–11473.

Introduction

Vernal Pools

Fig. 2 Vernal pool at Teatown Nature Reservation.

Photo by S. Davis

No single inflow of water \rightarrow no fish ₁

amphibian breeding and development ₁

shorter hydroperiods, longer dry periods 2

Less reproduction of poolbreeding amphibians 2

- 1. "Woodland Pool Conservation." Woodland Pool Conservation NYS Dept. of Environmental Conservation, www.dec.ny.gov/lands/52325.html.
- 2. Brooks, Robert T. "Weather-Related Effects on Woodland Vernal Pool Hydrology and Hydroperiod." Wetlands, vol. 24, no. 1, 2004, pp. 104–114., doi:10.1672/0277-5212(2004)024[0104:weowyp]2.0.co;2.

More accurate, inexpensive, and expeditious biomonitoring is needed

Environmental DNA analysis is a **new non-invasive biomonitoring** technique₁

- eDNA metabarcoding determines the presence of multiple species 1

^{1.} Taberlet, Pierre, et al. "Soil Sampling and Isolation of Extracellular DNA from Large Amount of Starting Material Suitable for Metabarcoding Studies." Molecular Ecology, vol. 21, no. 8, 2012, pp. 1816–1820., doi:10.1111/j.1365-294x.2011.05317.x.

^{2.} Dejean, Tony, et al. "Persistence of Environmental DNA in Freshwater Ecosystems." PLoS ONE, vol. 6, no. 8, 2011, doi:10.1371/journal.pone.0023398.

Introduction

Ambystoma jeffersonianum and Ambystoma laterale are...

- Vernal pool breeding in the lower
 Hudson Valley region 2
- **Special Concern** by the NYSDEC ₁
- Severe Concern by NEPARC 5
- -Harbingers of climate change 3
- Naturally sedentary and elusive 4

^{1. &}quot;List of Endangered, Threatened and Special Concern Fish & Dept. of Environmental Conservation, www.dec.nv.gov/animals/7494.html,

^{2.} Gibbs, James P. The Amphibians and Reptiles of New York State: Identification, Natural History, and Conservation. Oxford University Press, 2007.

Bucciarelli, Gary M., et al. "Amphibian Responses in the Aftermath of Extreme Climate Events." Scientific Reports, vol. 10, no. 1, 2020, doi:10.1038/s41598-020-60122-2

^{4.} Petranka, James W. Salamanders of the United States and Canada. Smithsonian Books, 2010.

^{5.} NEPARC. 2010. Northeast Amphibian and Reptile Species of Regional Responsibility and Conservation Concern. Northeast Partners in Amphibian and Reptile Conservation (NEPARC). Publication 2010-1.

Previous research has **yet to apply eDNA metabarcoding** to census vernal pool-breeding amphibians.

Purpose

Detect two threatened pool-breeding amphibian species using eDNA analysis.

Compare local historical data to recent temperature data.

Hypotheses

eDNA analysis will reveal the presence of Jefferson and Blue-spotted salamanders, and wood frogs.

Historical data will support a local warming trend.

Environmental Data

Collect data on env. variables to control for eDNA variation

Methods

Results

Collected at the time of sampling

Sampled from 8 wetlands total

4 vernal pools

Sample Site 4 \rightarrow only site with full 10-week data

Historical Data

photo link

Compare local historical data to recent temperature data.

Methods

-Compiled weekly average surface temperatures

0.84°C increase over 21 years

Results

Fyfe, John C., et al. "Overestimated Global Warming over the Past 20 Years." Nature Climate Change, vol. 3, no. 9, 2013, pp. 767–69. Crossref, doi:10.1038/nclimate1972.

Methods

Finding Study Sites

In Lower Hudson valley region with vernal pools

Acquired sampling permissions and permits

NYSDEC Environmental
Resource Mapper and Google
Maps

Water Samples

500ml samples from bodies of water

Four vernal pools, eight wetlands total

Methods

Stored frozen \rightarrow thawed \rightarrow filtered

 $\textbf{Filters frozen} \rightarrow \textbf{stored}$

DNA extracted, washed, and purified

Methods

eDNA analysis

Vert. 12S mitochondrial rRNA

Amplified through PCR

Next generation sequencing

GENEWIZ

eDNA analysis

BLASTed against GenBank nucleotide data

>96% identity

- ambystoma laterale
 ambystoma maculatum partial
 Anaxyrus americanus
 Anaxyrus fowleri
 Hemidactylium scutatum
- Hemidactylium scutatumhomo sapiens
- hyla versicolor partial
- Lithobates catesbeianus
- lithobates clamitans partial
- Lithobates palustris partial
- Lithobates pipiens
- M Notophthalmus viridescens partial
- Odocoileus virginianus
- peromyscus leucopus
- Plethodon cinereus
- pseudacris crucifer partial
- rana sylvatica

Read 2

Nucleotide BLAST

BLAST – Basic Local Alignment Search Tool

nucleotide ▶ nucleotide

Read 1

DNA Yields

DNA products after PCR, stained with SyberSafe dye, under UV transilluminator

Positive eDNA Detections

eDNA detections increase as breeding season progresses

≥96% identity threshold

Conservative ≥98% identity threshold

Number of Amphibian eDNA Detections in Vernal Pool Samples Over the Amphibian Breeding Season

Dates of Water Sample Collection

eDNA Detections

Less common

More common

eDNA Detections

Results

Detection of poolbreeding amphibians with eDNA metabarcoding

eDNA may be preferable for elusive amphibian species

There are no vernal pool protections in New York 1

Maine DEP

eDNA censuses vernal pools inexpensively and accurately

- . New York Natural Heritage Program. 2022. Online Conservation Guide for Vernal pool. Available from: https://guides.nynhp.org/vernal-pool/. Accessed March 8, 2022
- 2. "Significant Vernal Pool Habitat, Natural Resources Protection Act, Maine Department of Environmental Protection." Maine Department of Environmental Protection, www.maine.gov/dep/land/nrpa/vernalpools. Accessed 23 Mar. 2022.

Increase of eDNA detections over breeding season

More holistic amphibian census when amphibians are most active in the pools 1,2

- 1. Souza, Lesley S. de, et al. "Environmental DNA (EDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms." *PLOS ONE*, edited by Hideyuki Doi, vol. 11, no. 10, 2016, p. e0165273. *Crossref*, doi:10.1371/journal.pone.0165273.
- 2. Wright, Alexander D., et al. "A Hierarchical Analysis of Habitat Area, Connectivity, and Quality on Amphibian Diversity across Spatial Scales." *Landscape Ecology*, vol. 35, no. 2, 2020, pp. 529–44. *Crossref*, doi:10.1007/s10980-019-00963-z.

0.84°C warming trend over 21 years

Increased threat to amphibian populations_{1, 2}

- 2. Blaustein, Andrew R., et al. "Direct and Indirect Effects of Climate Change on Amphibian Populations." Diversity, vol. 2, no. 2, 2010, pp. 281–313., doi:10.3390/d2020281.
- 2. Brooks, Robert T. "Weather-Related Effects on Woodland Vernal Pool Hydrology and Hydroperiod." Wetlands, vol. 24, no. 1, 2004, pp. 104–14. Crossref,

www.fs.fed.us/ne/newtown square/publications/other publishers/OCR/ne 2004brooks01.pdf.

Hypothesis

eDNA analysis will reveal the presence of Jefferson and Blue-spotted salamanders, and other vernal pool breeding amphibians

2

3

Results

eDNA analysis revealed the presence of multiple elusive pool-breeding amphibian species and two mole salamander species.

Limitations

- Contamination between samples

- Incomplete database

- DNA degradation in storage

1 sample per wetland ->Inconsistent detections

Applications

 Effect of climate change on vernal pools

 Population status of threatened mole salamanders

- eDNA analysis on elusive amphibian species

conservation planning

Increased/more effective biomonitoring

Environmental DNA analysis effectively censuses pool-breeding amphibians in a threatened vernal pool habitat.

Acknowledgements

I would like to thank...

- Dr. Mark Stoeckle at The Rockefeller University for providing excellent guidance and supplies for this project.
- My friends and family for all their encouragement.
- Ms. Valerie Holmes and Mr. Angelo Piccirillo for providing endless support and resources.

Pool-Breeding
Amphibians with
Environmental DNA
Analysis

Samara Davis
GENIUS OLYMPIAD 2022

