FROM CRUST TO CORE

A Chronicle of Deep Carbon Science

Simon Mitton
I came to know the curious, absorbent and learned Simon Mitton in 2012, when Simon completed the editing and publication of Taking the Back off the Watch: A Personal Memoir of the scientist Thomas Gold. As a graduate student of Nobel Prize-winning astronomer Martin Ryle during a rather turbulent time and a historian of science at the University of Cambridge, Simon knew Tommy, who was conjecturing about the origin of very distant radio signals. Following Tommy’s death in 2004, Simon worked closely with Tommy’s widow, Carvel, to bring the memoir to fruition.

In 1995, grants from the Alfred P. Sloan Foundation supported Gold in writing a book based on his path-breaking 1992 paper in the Proceedings of the National Academy of Sciences paper, “The Deep, Hot Biosphere.” Gold’s 1999 book, The Deep Hot Biosphere: The Myth of Fossil Fuels, addressed controversial questions, including the possibility that life originated deep in Earth rather than in a warm little pond on its surface or extraterrestrially, arriving from space on a comet or meteorite. It also argued that a large fraction of Earth’s hydrocarbons (natural gas, oil and coal) had primordial, abiotic origins and accumulated in the crust from upward outgassing rather than forming as “fossil fuels” from the shallow burial of biomass during the Jurassic and other epochs.

While the Foundation took no position on Gold’s propositions, Sloan president Ralph Gomory (1990–2007), mathematician and former chief of research for IBM, believed that big questions of the kind Gold raised usefully stimulated science. Sloan also supported Renegade Genius, a television documentary on Gold that appeared in 2009, five years after Gold had passed away.

In 2007, geologist Robert Hazen (Carnegie Institution for Science, Washington, DC) published the book Genesis, aimed at
public understanding of questions associated with the origins of life. The book came to my attention as a Sloan program manager who had handled Sloan’s grants with Gold. Hazen’s book dispassionately weighed evidence for and against several of Gold’s propositions, as well as pointing to other major unanswered questions in the geosciences, including the ecology and evolution of minerals.

Sloan invited and provided funds to Hazen to organize a May 2008 conference to explore the limits of knowledge (the known, unknown and unknowable) of deep carbon science, which Hazen did together with his colleague, Russell Hemley, then director of Carnegie’s Geophysical Laboratory and an expert in materials under extremely high pressures, as in Earth’s interior. In the interim, MIT microeconomist Paul Joskow had assumed the presidency of Sloan. President Joskow had a keen interest in energy resources and a long-standing relationship with Richard Meserve, president of the Carnegie Institution and former head of the US Nuclear Regulatory Commission. The May 2008 meeting proved very lively. President Joskow asked me to consult experts and stakeholders and to prepare an internal strategy paper for a 10-year international initiative about deep carbon science to be anchored by funding from Sloan and to convene an expert group to vet the strategy.

Among those consulted and immediately enthusiastic were earthquake expert, former Sloan Trustee and National Academy of Sciences president Frank Press and also Walter Munk (Scripps Institution of Oceanography), who helped start the international program for drilling in the seafloor during the 1960s, about which Simon writes in Chapters 8 and 9. Gold’s former colleague John Saul (geologist) and student Steven Soter (astronomer) also provided advice and impetus. Favorable vetting resulted in an invitation in early 2009 from Sloan to Carnegie for a three-year US$4 million grant to initiate a major program in deep carbon science, spanning biology as well as solid-earth sciences. Hemley suggested the framework of a “Deep Carbon Observatory” (DCO) to emphasize the importance of making new measurements. The Sloan Trustees approved the grant in
June 2009, and the DCO officially came into existence on July 1, 2009, with Hazen as lead scientist and Hemley chairing a distinguished international steering committee. Founding members included John Baross [USA], Taras Bryndzia [Australia/USA], Claude Jaupart [France], Adrian Jones [UK], Barbara Sherwood Lollar [Canada], Eiji Ohtani [Japan] and Sergei Stishov [Russia]. An administrative secretariat was established at Carnegie. Assuming the DCO proceeded very well, the Sloan Trustees committed to provide about US$5 million a year for 10 years, a total of about $50 million.

Over the next two years, a series of workshops led to the emergence of four communities to carry out the work of the DCO: Deep Life, Deep Energy; Reservoirs and Fluxes; and Extreme Physics and Chemistry. Each community prepared a set of “decadal goals” to achieve by the end of 2019 and agreed to organize the work along the four themes of origins, quantities, movements and forms. Cross-community teams concerned with data science and with engagement (communications and community building) were formed in 2011–2012. Early grant-making focused on instrument development, using both open, competitive calls for proposals and invited proposals. Subsequently, the majority of Sloan DCO funding was used to support a global network of graduate students and postdocs. Much effort went into community building: for example, cultivation of DCO support in Germany, France, Italy, the UK, Russia, China and Japan, as well as the USA; development of a website for both internal and external purposes; and giving the DCO a recognizable identity and family feeling. The program used the major international meetings in geosciences (especially the annual meeting of the American Geophysical Union and the annual Goldschmidt conference in geochemistry) to bring together the growing network of participants in the DCO.

At the outset of the program, Sloan asked the DCO to prepare a report that would describe the baseline of knowledge about deep carbon and that could be used to help measure progress achieved by 2019. The DCO leadership chose to try to create not only a
benchmark, but a landmark, and in 2013, they published the 20-
chapter, 698-page open access volume, Carbon in Earth. Released at
an “all-program” meeting of close to 200 people at the US
National Academy of Sciences in Washington, DC (March 2013),
along with a press release summarizing the DCO’s goals, the
volume also served to attract many more scientists to the DCO
network, which grew to about 500 by the end of 2013. A December
2013 press release highlighted early discoveries. The December
2014 Mid-term Scientific Report by Hemley summarized the
first five years of the program. Subsequent all-program
meetings took place in Munich (April 2015) and St. Andrews
(March 2017).

A question early in the DCO decade was whether to foster an
effort to drill through the crust into the mantle, as was strongly
advocated by Japanese members. After the spring 2011 Tohoku
earthquake, Japan deferred interest in this “Moho.”

During 2014, Sloan organized a far-reaching mid-term review by
an external group of experts who had no stake in the DCO. The review
led to major additions and changes in the program, including
formation of a new group to take responsibility for synthesis, led by
Cambridge volcanologist Professor Marie Edmonds, to whom Simon
dedicates this book. The Synthesis Group and much of the strategic
management of the DCO were handled by a team at the University of
Rhode Island led by Sara Hickox and later Darlene Trew Crist. The
Rhode Island team skillfully organized an October 2015 workshop
that formulated most of the synthesis activities of the DCO.
Creatively, they invited Simon to offer a historian’s perspective on the
DCO, which he did during a lively and provocative evening session.
Sloan then invited Simon to submit a proposal to write a history of
depth carbon science to place the DCO in context. The happy result is
this book, which spans from the center of Earth to faraway habitable
planets, with rich intervals in Europe during the Renaissance and
Enlightenment, as well as the contemporary archipelagos of global
research.
During 2015–2019, the active membership of the DCO network reached a total of about 1200 scientists from about 50 nations. In the later years, the substantial flow of DCO peer-reviewed publications included numerous papers in Science, Nature and other prestigious outlets. Under Edmonds and Trew Crist’s leadership, a 50-page decadal report, press releases, special issues of journals and hundreds of other articles, as well as videos and blogs and two other books reachable at deepcarbon.net, summarize the work of the program. Although tracking matching and leveraged funds is difficult because of different forms of funding in different nations and for other reasons, a cautious estimate is that US$200–$250 million in funds from other sources complemented US$57 million that Sloan spent on the DCO program between 2009 and the culminating events in the fall of 2019.

I first met Tommy Gold in about 1983. In subsequent years, he would appear unexpectedly at my office at The Rockefeller University, having arrived on the Big Red Bus that shuttles Cornell University faculty and students between the main campus in rural Ithaca, New York, and the Manhattan campus. He would speak for an hour or so about abiotic methane, or the possible deep origin of life, or the formation of diamonds, and then abruptly depart. I believe Tommy was a Renegade Genius, and that even Tommy, who was schismatic, would have admired the contributions of the DCO, of which he was the progenitor. And he would especially have liked this book of Simon Mitton, which shows vividly how the matter of deep carbon has arrived as a science through the overthrow of received ideas.

Jesse H. Ausubel

Science Advisor to the Alfred P. Sloan Foundation for the Deep Carbon Observatory; Director, Program for the Human Environment, The Rockefeller University
From Crust to Core
A Chronicle of Deep Carbon Science

SIMON MITTON
University of Cambridge
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Why Carbon in Earth Matters</td>
<td>4</td>
</tr>
<tr>
<td>Foundation of the Deep Carbon Observatory</td>
<td>4</td>
</tr>
<tr>
<td>Spheres Below and Heavens Above</td>
<td>7</td>
</tr>
<tr>
<td>Looking Down on Earth</td>
<td>11</td>
</tr>
<tr>
<td>The Invention of Earth System Science</td>
<td>14</td>
</tr>
<tr>
<td>Environmentalists Shake Up Humanity</td>
<td>16</td>
</tr>
<tr>
<td>Global Warming and Deep Carbon</td>
<td>18</td>
</tr>
<tr>
<td>Jules Verne Imagines Earth's Dynamic Interior</td>
<td>20</td>
</tr>
<tr>
<td>2 The Origin of Deep Carbon in Deep Space</td>
<td>22</td>
</tr>
<tr>
<td>Carbon Is Universal</td>
<td>22</td>
</tr>
<tr>
<td>It Started with a Big Bang!</td>
<td>23</td>
</tr>
<tr>
<td>Stellar Origin of the Chemical Elements</td>
<td>25</td>
</tr>
<tr>
<td>Origin of Carbon in the Universe</td>
<td>29</td>
</tr>
<tr>
<td>Exploding Stars Seed Space with Carbon</td>
<td>34</td>
</tr>
<tr>
<td>Giant Molecular Clouds</td>
<td>36</td>
</tr>
<tr>
<td>Formation of the Solar System</td>
<td>38</td>
</tr>
<tr>
<td>Making Rocky Planets</td>
<td>40</td>
</tr>
<tr>
<td>Thwack! Moon Making</td>
<td>43</td>
</tr>
<tr>
<td>3 Deliveries of Cosmic Carbon Continue</td>
<td>45</td>
</tr>
<tr>
<td>Adding the Volatiles, Carbon and Water</td>
<td>45</td>
</tr>
<tr>
<td>Carbonaceous Chondrites Carry Carbon</td>
<td>48</td>
</tr>
</tbody>
</table>
Organic Riches in the Murchison Meteorite 57
Cosmic Carbon Chemistry 58

4 On the Nature of Earth’s Interior 62
Inquiring about Earth in Antiquity 62
Mining Deep Earth Begins 64
Earth’s Magnetic Attraction 71
Edmond Halley Investigates Geomagnetism 72
Henry Cavendish Weighs Earth 75

5 Earth’s Physical Interior Revealed 77
“The Most Ingenious Book I Ever Read” 77
Stratigraphy: A Layered Approach to Earth History 79
The Coal Prospector and the Geological Map 81
Defining the Order of the Strata 85
The First Large-Scale Geological Map 88
Professing Earth Science 89
The Magnetic Crusade: The First International Geophysical Survey 92

6 Thousands, Millions or Billions: The Question of Timing 97
Reading Nature’s Archives 97
Deep Time and Nature’s Deep History 100
Ussher and the Age of Earth 101
“Drawing Large Cheques upon the Bank of Time” 102
Antoine-Laurent de Lavoisier: Combustion and Respiration 106
Is Coal’s Origin Biogenic? 110
Paris: A Walk in the Park 111
Charles Darwin: Geologist and Natural Historian 112
Evolution by Natural Selection 114

7 Physics and Chemistry of Deep Earth 119
Fixing the Age of Earth 119
Radioactivity Raises the Stakes 125
The Curies Discover the Source of Earth's Internal Heating 127
Radioactive Clocks Locked in Rocks 130
Arthur Holmes Dates Earth 134
Earth's Dynamic Deep Interior 138
Isotopes Extend the Geological Timescale 139

8 Confronting the Continental Drift Conundrum 147
"What We Are Witnessing Is the Collapse of the World" 147
Alfred Wegener Shifts the Worldview 149
Seeing Off Opponents, Seeking Scarcce Supporters 152
Holmes Warns to Continental Drift 158
Why Did It All Take So Long and What Was Learned? 163

9 The Mid-Atlantic Ridge and Rift Valley 167
The Foundations of Oceanography 167
The Challenger Expedition, 1872–1876 169
Finding the Mid-Atlantic Ridge and the Mariana Trench 173
The Postwar Bonanza for Geosciences 175
Günther Dietrich Profiles the Ridge and the Central Rift Valley 176
Harry Hess: "Drowned Islands of the Pacific Basin" 178
Maurice Ewing: "I Keep My Ship at Sea" 180
The Heezen-Tharp Map, 1957 184
The Geopoetry of Harry Hess, 1962 187
Robert Dietz: The Seafloor Is a Conveyor Belt 191

10 Earth's Deep Dynamics Discovered 194
Seismology Digs Deep to the Core 194
The Physicists and the Dynamo 196
Paleomagnetism and the History of Rocks 199
Pioneering Geomagnetism at the Carnegie Institution 201
Apparent Wandering of the Geomagnetic Field 204
Drifting, Not Wandering 206
11 Reversals of Fortune
 Dating Geomagnetic Reversals
 Mapping the Magnetic Seafloor
 Lawrence Morley’s “Eureka!” Moment
 Fred Vine’s “Eureka!” Moment
 The Final Chorus
 211

12 Deep Carbon: Cycles, Reservoirs and Fluxes
 The Jigsaw Slots Together
 Ring of Fire
 Inventing Volcanology
 Jacques-Joseph Éhelmen: Deep Carbon Cycle Pioneer
 Breathing New Life into Deep Carbon Science
 Box Models of the Long-Term Carbon Cycle
 Quantifying Reservoirs and Fluxes
 2009–2019: Decade of Deep Carbon Discovery
 234

13 Carbon-Bearing Phases in the Mantle
 Inventing High-Pressure Physics and Chemistry
 Diamond Synthesis: Seeking the Holy Grail
 Carnegie Geophysical Laboratory: High-Pressure Mineralogy
 Geoscientists Are Attracted to High-Pressure Research
 Five Reactions and the Deep Carbon Cycle
 Carbon Mineral Evolution
 The Carbon Mineral Challenge
 261

14 Diamond in the Mantle
 Delving Deep for Diamond
 Diamond in Kimberlite
 Cecil Rhodes: Founder of the Modern Diamond Industry
 Kimberlite and the Formation of Diamond
 282
1 Dating Diamonds
Origin of the Largest Gem Diamonds

15 Deep Life
 Signs of Deep Life
 Drilling Down in Sweden
 Subterranean Life in Deep Mines
 Deep Marine Sediment Communities
 Marine Bacteria and Biofilms
 Dredging and Drilling the Deep
 Deep Marine Life at Hydrothermal Vents
 Thomas Gold Proposes the Deep, Hot Biosphere
 Drilling to the Deep Biosphere
 Epilogue

Glossary
Biographical Notes
Index