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A Primer on Logistic Growth and Substitution:

The Mathematics of the Loglet Lab Software

PERRIN S. MEYER, JASON W. YUNG1 and JESSE H. AUSUBEL2

ABSTRACT

This article describes the mathematics underlying the Loglet Lab software

package for loglet analysis. “Loglet analysis” refers to the decomposition of

growth and diffusion into S-shaped logistic components, roughly analogous to

wavelet analysis, popular for signal processing and compression. The term

“loglet” joins “logistic” and “wavelet.” Loglet analysis comprises two models:

the first is the component logistic model, in which autonomous systems exhibit

logistic growth. The second is the logistic substitution model, which models

the effects of competitions within a market. An appendix describes the current

status of the software.

1. Introduction

We are all accustomed to the idea of growth to a limit, for example, the number
of people becoming ill in an epidemic. In fact, observers have recorded thousands of
examples of such S-shaped growth in settings as diverse as animal populations [1],
energy and transport infrastructures[2, 3, 4], language acquisition[5], and techno-
logical performance[6, 7, 8]. Often the measured quantity (population of a species,
height of a plant, power of an engine) grows exponentially at the outset. However,
natural systems cannot sustain exponential growth indefinitely. Rather, negative
feedback mechanisms or signals from the environment slow the growth, producing
the S-shaped curve. Thus, for a single growth process, a single sigmoidal curve
is often a useful model.

However, many systems exhibit complex growth, with multiple processes occur-
ring sequentially or simultaneously. Kindleberger [9], in an economic history of the
world since 1500, wrote: “In the real world there are many wiggles, speedups, and
setbacks, new S-curves growing out of old, separate curves for different sectors and
regions of a national economy, all of which present difficulties when an attempt is
made to aggregate them on a weighted basis.” Many such phenomena, it turns out,
can be described elegantly with a simple mathematical model.

Humans create technologies, some of which are selected and diffused into society,
much like servers on a network creating waves of packets and sending them out onto
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the Internet. Aggregating all these wavelets 3 creates much of the apparent com-
plexity we observe; in this case, the problem of decoding complexity is essentially a
problem of deconvolution. Generally speaking, the human eye is not well-suited to
perform this task with a reasonable degree of precision. The Loglet Lab software
package was designed to assist us in this endeavor.

We propose the development of loglet analysis for the the analysis, decom-
position, and prediction of complex growth processes. The term “loglet”,
coined at The Rockefeller University in 1994, joins “logistic” and “wavelet.” Two
main objectives of loglet analysis are to analyze existing time-series growth data
sets in order to decompose the growth process into sub-processes and to eluci-
date information on carrying capacities and other aspects (“top-down” approach);
and to analyze individual sub-processes in order to determine macro or envelope
system behavior (“bottom-up” approach). At the heart of loglet analysis is the
three-parameter S-shaped logistic growth model. The logistic is attractive for
modeling S-shaped growth because it is a parsimonious model where the three
parameters have clear, physical interpretations.

The Loglet Lab software package allows users to perform loglet analysis on any
suitable time-series data set. The user interface is easy and informative for the
casual user and the common case of a single logistic in isolation; at the same time,
Loglet Lab has an advanced fitting engine to analyze complex data and compound
phenomena. This document provides the background for performing logistic analy-
sis. The following sections describe the mathematics behind the Loglet Lab software
package. For instructions on using the Loglet Lab software package, consult the
“Loglet Lab Tutorial” [10].

2. Simple Growth Models

The mathematical models used in this article are based on Ordinary Differential
Equations (ODEs). Physicists first used ODEs to model the trajectories of moving
objects. When applied to population or technologies, they describe continuous
“trajectories” of growth or decline through time. Although populations of humans
and many technological variables grow and decline in discrete numbers, continuous
models are often used for simplicity when modeling large aggregates. Montroll
[11] makes the connection between physical and population “trajectories” clear by
proposing “laws of social dynamics” based on Newton’s laws of mechanics.

The exponential growth of multiplying organisms is represented by a simple and
widely used model that increases without bounds or limits as Figure 1 illustrates.
In mathematical terminology, the growth rate of a population P (t) is proportional
to the population. The growth rate at time t is defined as the derivative dP (t)

dt . The
exponential growth model written as a differential equation

dP (t)
dt

= αP (t) Exponential Growth Model (1)

3In this article, we use the wavelet analogy to motivate our formulation of Loglet analysis. The
mathematical equivalence of what wavelet analysis currently means in the digital signal processing

community and our model is a topic of our active research. In traditional wavelet analysis, the
basis function must be orthogonal, and the logistic model is not. We suspect that our model could

fit into the framework of non-orthogonal wavelet theory. However, results from this theory are
not necessary for any of the methods presented in this article.
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Figure 1. Comparison of exponential and logistic growth.

can be solved by introducing e (the base of the natural logarithm, approximately
2.71 . . . ). The familiar solution to (1) is

P (t) = β eα t (2)

where α is the growth rate constant and β is the initial population P (0). α is often
expressed in percent. An α with a value of 0.02 is equivalent to the statement “the
population was growing continuously at 2% per year.” Although many populations
grow exponentially for a time, no bounded system can sustain exponential growth
indefinitely unless the parameters or boundaries of the system are changed.

Because few, if any, systems are permanently unbounded and sustain exponential
growth, equation(1) must be modified with a limit or a carrying capacity that gives
it the more realistic sigmoidal shape of the lower curve in Figure 1. The most
widely used modification of the exponential growth model is the logistic. It was
introduced by Verhulst in 1838 but popularized in mathematical biology by Lotka
[12] in the 1920’s, as Kingsland [13] writes in her comprehensive history of such
models in population ecology.

The logistic equation begins with the P (t) and α of the exponential but adds a
“negative feedback” term

(
1− P (t)

κ

)
that slows the growth rate of a population as

the limit κ is approached:

dP (t)
dt

= αP (t)
(

1− P (t)
κ

)
︸ ︷︷ ︸
feedback term

(3)

Notice that the feedback term
(

1− P (t)
κ

)
is close to 1 when P (t) � κ and ap-

proaches zero as P (t) → κ. Thus, the growth rate begins exponentially but then
decreases to zero as the population P (t) approaches the limit κ, producing an
S-shaped (sigmoidal) growth trajectory.

It is possible to solve the logistic differential equation (3) to find an analytic
(algebraic) solution. Often, more complicated differential equations do not have
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analytic solutions, and must either be simplified or solved numerically [14]. The
solution to the logistic differential equation (3) is:

P (t) =
κ

1 + exp (−α(t− β))
(4)

Equation (4) produces the familiar S-shaped curve. Note that three parameters are
needed to fully specify the curve, α, β, and κ.

The growth rate parameter α specifies the “width” or “steepness” of the sig-
moidal curve. It is often helpful to replace α with a variable that specifies the
time required for the trajectory to grow from 10% to 90% of the limit κ, a period
which we call the characteristic duration, or ∆t. Through simple algebra, the
characteristic duration is related to α by ∆t = ln(81)

α . The parameter ∆t is usually
more useful than α for the analysis of historical time-series data because the units
are easier to appreciate. The parameter β specifies the time when the curve reaches
1
2κ, or the midpoint of the the growth trajectory, often re-labeled tm. The pa-
rameter κ, as discussed, is the asymptotic limit that the growth curve approaches,
i.e., market niche or carrying capacity. The logistic model is symmetric around the
midpoint tm. Other models describe non-symmetric or skewed growth, e.g., the
Gompertz. We will not consider non-symmetric growth in this study. Banks [15]
comprehensively surveys growth and diffusion phenomena modeled by ODE’s.

We can readily compare the exponential and logistic growth models. In the
examples in Figure 1, both models have the same growth rate parameter α = 0.11
(approximately 11% per year) and a starting population of 1.22 at t = 0. Note that
for the first 20 years the exponential and logistic curves are hardly distinguishable,
and only diverge significantly after 30 years. But after only 50 years the exponential
curve has exploded off the chart while the logistic is stabilizing near the carrying
capacity κ, in this case 100. The characteristic duration of this logistic, the time
needed for the population to grow from 10% to 90% of κ, is 50 years, with a
midpoint tm = 40.

Figure 2 illustrates the rewarding fit of the logistic to the multiplication of bac-
teria consuming sugar and minerals in a closed petri dish and especially to their
stagnation when the food runs out or they befoul their environment. Here the car-
rying capacity κ is limited by available space (which equates with food). As the
bacteria exhaust the nutritious area of the dish, the growth rate slows, producing
the S-shaped logistic growth trajectory.

The three parameters κ,∆t, and tm define the parameterization of the logistic
model used as the basic building block for Loglet analysis

N(t) =
κ

1 + exp
[
− ln(81)

∆t (t− tm)
] . (5)

The simple logistic model is useful in part because the parameters obtained by
fitting the model to data can be easily compared across many different systems.
These parameters also help in formulating complex models, for which they pro-
vide a frame of reference and first-order guesses for the possible time-scales and
magnitudes of component variables.

2.1. Visualization of the logistic model. Usually we first visualize logistic
growth by simply plotting data on an absolute and linear scale. A change of vari-
ables that normalizes a logistic curve renders it a straight line. This view is known



Meyer, Yung, & Ausubel, Technological Forecasting & Social Change 61(3):247–271, 1999 5

0 1 2 3 4 5
0

10

20

30

40

50

Days

A
re

a 
in

 s
qu

ar
e 

cm

= 50

t = 2.2 Days 

t    = 2.5m

Figure 2. Growth of a bacteria colony fitted to a logistic curve.
Source of data: [16].

as the Fisher-Pry4 Transform:

FP (t) =
(

F (t)
1− F (t)

)
, where F (t) =

N(t)
κ

(6)

Note that

ln(FP (t)) =
ln(81)

∆t
(t− tm) (7)

so if FP (t) is plotted on a semi–logarithmic scale, the S-shaped logistic is rendered
linear. Figure 3 shows the Fisher-Pry transform of the bacteria example in figure
2. We observe that the time in which the value is between 10−1 and 101 is equal to
∆t, and the time at 100 is the point of inflection (tm). On the right axis we label
the corresponding percent of saturation ( 100 ∗F ) at each order of magnitude from
10−2 to 102 rounded to the nearest percent. Because the Fisher-Pry transform
normalizes each curve to the carrying capacity κ, more than one logistic can be
plotted on the same chart for comparison. As we will see, this becomes useful when
we analyze more complex growth behaviors.

3. The Component Logistic Model

Many growth and diffusion processes consist of several subprocesses. First, let
us model a system that experiences growth in two discrete phases. Then, we will
extend this model to an arbitrary number of phases.

Systems with two growth phases we have termed “Bi-logistic” [7]. In this
model, growth is the sum of two discrete “wavelets” , each of which is a three-
parameter logistic:

N(t) = N1(t) +N2(t), (8)

4Named after the authors who wrote a paper that popularized this technique [6], the method
first appeared in a paper written by Edwin B. Wilson in 1925 [17].
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Figure 3. Logistic growth of a bacteria colony plotted using the
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where

N1(t) =
κ1

1 + exp
[
− ln(81)

∆t1
(t− tm1)

]
N2(t) =

κ2

1 + exp
[
− ln(81)

∆t2
(t− tm2)

]
We can examine system-level behavior (i.e., N(t)), or we can decompose the model
and examine the behavior of the discrete components (either N1(t) or N2(t)). In
fact, we can plot N1(t) and N2(t) on the same axes, and moreover we can compare
two disparate loglets by normalizing them with the Fisher-Pry transform.

3.1. Taxonomy of bi-logistic curves. Wavelets often overlap in time. Depend-
ing on the order and magnitude of the overlap, the aggregate curve can take on
a wide range of appearances. Figure 4 shows a taxonomy of bi-logistic processes,
with the Fisher-Pry transform of the two component logistics on the right.

Panel A is an example of a “sequential” bi-logistic; the second pulse does not
start growing until the first pulse has nearly reached its saturation level κ1. This
shape bi-logistic characterizes a system which pauses between growth phases.

Panel B is an example of a “superposed” bi-logistic, where the second pulse
begins growing when the first pulse has reached about 50% of saturation. This bi-
logistic growth model characterizes systems that contain two processes of a similar
nature growing concurrently except for a displacement in the midpoints of the
curves.

Panel C shows a “converging” bi-logistic, where a first wavelet is joined by a
second faster, steeper wavelet; the two pulses culminate at about the same time.
Often a late adopter of a technology, having learned from the experiences of an
early adopter, will advance faster, resulting in a smaller ∆t.
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Figure 4. A taxonomy of bi-logistic processes growing through
time to a notional limit of 200 units. Fisher-Pry decompositions
are shown in the right column.

Panel D shows a “diverging” bi-logistic, where two logistic growth processes begin
at the same time but grow with different rates and carrying capacities defined from
the start.

The panels show the merits of Loglet analysis. While curve A looks logistic,
curve B hardly appears S-shaped. Curves C and D are S-shaped, but asymmetric,
so they do not appear to be logistic. Yet all four curves are made up of logistic
components.

3.2. Generalization of the Bi-logistic model. Now we generalize the bi-logistic
model to a multi-logistic model, where growth is the sum of n simple logistics:

N(t) =
n∑
i=1

Ni(t), (9)

where

Ni(t) =
κi

1 + exp
[
− ln(81)

∆ti
(t− tmi)

] . (10)

Figure 5 shows a Loglet analysis of a hypothetical data set fitted with the sum of
five component logistics (shown in the box in the upper right hand corner). Here
again, apparently complex behavior reduces to the sum of logistic wavelets. Note
that “growth” processes also include processes of decline; in our model, this occurs
when ∆t < 0.

3.3. Implementation in Loglet Lab. The Loglet Lab software package allows
users to fit several logistic pulses to a series, elucidating clues to the components
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Figure 5. A loglet analysis of a data set composed of five logistics.

that form the wiggles, speedups, and set backs that Kindleberger described so well.
Users are prompted to provide the fitting engine with a bare amount of information
(i.e., how many components to use); the fitting engine, as its name would imply, does
the mathematical calculations to obtain the parameters which optimally describe
the logistic, and plots the resulting curve. Once the fit has been made, users can
access the various visualizations which we described above.

The following section will describe the mathematics of the fitting engine and the
mathematical motivations behind analyzing systems with logistic growth.

4. The Mathematics of Loglet Analysis

This section introduces the algorithms implemented in Loglet Lab for fitting
logistics with arbitrary numbers of components to a data set. We include examples
using hypothetical and historical data, as well as descriptions of the corresponding
operations in Loglet Lab.

Because growth over time of either organisms or the diffusion of some other
variable such as number of cars or length of canals is the usual subject of loglet
analysis, vector notation is convenient to represent the data values, the parameters,
and the fitted Loglet model.

4.1. Definitions and notation. Consider the two-dimensional space in which our
data set D exists. If there are m data points, then we define D as

D = {(t1, d1), . . . , (ti, di), . . . , (tm, dm)}

where ti usually represents time, while di represents the growing variable (e.g.,
number of organisms, percent of saturation).
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Figure 6. A hypothetical bi-logistic data set(A), residuals of the
fitted curve(B), and decompositions in raw form (C) and with the
Fisher-Pry transform applied (D).

Suppose we want to fit a logistic curve of n components to the model. Then
we will require 3n parameters, represented as a n× 3 matrix P, where the ith row
describes the ith component:

P =

 ∆t1 κ1 tm1

...
∆tn κn tmn


Thus a loglet can be alternatively specified by

N(t,P) =
n∑
i=1

Pi2

1 + exp
[
− ln(81)

Pi1
(t−Pi3)

]
Figure 6A shows a hypothetical data set (the circles) and a fitted loglet with

n = 2 and

P =
[

20 50 30
25 60 60

]
.

Gaussian noise was added to the data so the data to show non-zero residuals.

4.2. Decomposition. Now consider the set of n logistic components C = {c1, . . . , cn},
where

ci = Ni(xi,Pi)
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where xi is an arbitrary subspace of t. (The components ci are analogous to Ni(t)
as discussed in equation (10).) A typical choice for xi is the interval over which ci
grows from 10% to 90% of its saturation level, namely (tmi −∆ti, tmi + ∆ti).

Restricting the domain of ci gives us a criterion for decomposing the associated
data set D into subsets Dj (1 ≤ j ≤ n) corresponding to each component logistic
ci. A subset Dj contains a point (ti, di) if tmi −∆ti ≤ ti ≤ tmi + ∆ti:

Dj = {(ti, d∗i ) | ti ∈ xi}.

where d∗i is the adjusted value of di. The adjustment is subtracting out the “ef-
fects” from other components, leaving us with the (approximate) contribution of
component ci to this data point. In other words,

d∗i = di −
∑
j 6=i

Pj2

1 + exp
[
− ln(81)

Pj1
(t−Pj3)

]
In Figure 6C, the hypothetical data set plotted in Figure 6A is decomposed into
subsets D1 (circles) and D2 (crosses); similarly, the fitted curve is also decomposed
into its component logistics. Note that the subsets Dj are not necessarily mutually
exclusive in the t domain; in this example, D1 and D2 share points with common
t-values around t = 40. At these times, we can see that there are two concurrent
growth processes; in addition, we can also quantify how much of the growth can be
attributed to each process.

As we saw in Figure 4, we can apply the Fisher-Pry transform to each compo-
nent and its corresponding data subset. This is useful because it normalizes each
component on a semi-logarithmic scale, allowing for easy comparison when plotted
on the same graph. Moreover, it allows the fitting of logistics using linear least
squares. The Fisher-Pry transform of components ci is

FP (ci) =

ci
κi

1− ci
κi

where plotting xi vs. log(FP (ci)) produces a straight line. The component data
subsets Dj are transformed in a similar manner:

FP (d∗i ) =

d∗i
κi

1− d∗i
κi

Figure 6D shows the Fisher-Pry decomposition of the hypothetical data, while
Figure 6B shows the residuals, as discussed later in section 4.4.

4.3. Growth rates and the “bell” view. Just as the differential equation (3)
reveals the mechanism propelling its integral equation (4), the rates of change of
the component logistics provide clues to the mechanisms propelling the composite
logistic. Analyzing the rates of change is often useful when yearly or percent per
year tabulations are applicable, as in the case of economic data. Recall that the
analytic form of the three-parameter logistic is:

N(t) =
κ

1 + exp
[
− ln(81)

∆t (t− tm)
]



Meyer, Yung, & Ausubel, Technological Forecasting & Social Change 61(3):247–271, 1999 11

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

P
(t

)

  A

10 20 30 40 50 60 70 80 90
0

2

4

6
  B

 Time

R
at

e 
of

 C
ha

ng
e 

in
 P

er
ce

nt

Figure 7. Rates of change of the two component logistics (The
“Bell View”)

The instantaneous rate of growth of the logistic function is given by its derivative
with respect to time:

dN(t)
d t

=

ln(81)
∆t κ exp

(
− ln(81)

∆t (t− tm)
)

[
1 + exp

(
− ln(81)

∆t (t− tm)
)]2 (11)

Plotting (11) produces a bell-shaped curve similar, but not identical, to the nor-
mal distribution function. Naturally, the bell-shaped curve peaks at the midpoint
tm; analytically, this is the point of inflection, and thus it is an extremum of N(t).
Panel B of Figure 7 shows the derivative of the component logistics of our test
function (Panel A is shown again for comparison purposes).

The rate of change of the data subsets Dj is computed discretely, creating the
sets Dj , in which each point Ei is

Ei =
(
ti + ti+1

2
+ ti,

ci(ti+1)− ci(ti)
ti+1 − ti

)
where 1 ≤ j ≤ m − 1. In other words, Ei contains the discrete derivative from
(ti, d∗i ) to (ti+1, d

∗
i+1).

Loglet Lab can decompose a logistic curve into its discrete components. Each
component can be transformed using the Fisher-Pry transform, and its rate of
change can be plotted.

4.4. Residuals. Residuals are the error, or difference, between the model and the
observed data. The residual vector R = {r1, . . . , rm} is defined by

ri = di −N (t, P).
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For the hypothetical data set actual values of the residual vector were plotted in
Figure 6B.

We can also calculate residuals as percentage error:

ri =
(di −N (t, P))

N(t,P)
× 100.

It is crucial to examine the residuals after a fit. When a fit is “good,” the
residuals are non-uniformly distributed around the zero axis; that is, they appear
to be random in magnitude and sign. A substantial or systematic deviation from
the zero axis indicates some phenomenon is not being modeled or fitted correctly.
An iterative process of fitting loglets to a data set and then examining the residuals
is a good way to proceed, unless the errors in the data and shown in the residuals
are known to come from other sources (e.g., an economic recession). Loglet Lab
provides views of both percentage and raw error.

5. Numerical Methods for Estimating Loglet Parameters from

Time-Series Data

The Loglet model is nonlinear. Although there are no direct methods for esti-
mating the parameters for nonlinear models, we can use iterative methods for this
purpose. Such methods minimize some function of the residuals.

The standard method for estimating model parameters is the method of least-
squares, where the sum of the squares of the residuals is minimized. In our notation,
our goal is to

vary P such that χ2 =
∑

r2
i is minimized.

Thus we must set P0, which holds initial values for P, and iteratively adjust its
entries until χ2 has sufficiently converged to a minimum. Note that we do not have
to adjust all the entries of P0; there may be reason to hold any one of the entries
constant. For example, there may be physical constraints to the growth (the size
of the petri dish limits the population of a bacteria culture), or time constraints on
the midpoint or growth time.

The least-squares method assumes errors are randomly and normally distributed.
However, predetermining the error distribution of historical data sets is often hard.
Least-squares can still be used, but the parameter value estimates are no longer
guaranteed to be correct. In fact, on data sets with outliers, or systematic errors,
least-squares regression can produce poor results.

For example, least-squares parameter estimates for logistic functions can overes-
timate the saturation value (κ). For incomplete S-shaped processes the estimation
of κ by OLS depends strongly on small deviations around the midpoint tm. Thus,
when fitting an incomplete S-shaped process in Loglet Lab, it is usually a good
idea to try a second fit with the saturation held at, say, 90% of the final value
from the first fit and compare the new fit as well as the new residuals. In addition,
we have found that using the Fisher-Pry transform to corroborate the fit can help
produce useful results, as the FP transform in effect weighs the data points near
the beginning and tail of the sigmoid more than near tm.

5.1. Weighting and masking. In some historical data sets, certain data may
be known to be affected by external agents such as war, or there may be some
other bias or problem. Variation in the quality or reliability of data provides an
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Figure 8. Analysis of French Motorized Mobility. Panel B shows
the component logistics normalized to their respective κi (for
scale). Panel C shows the Fisher-Pry transform of the masked
data set, while Panel D shows the Fisher-Pry transform of all of
the (unmasked) data.

incentive for weighting data sets. This is accomplished by introducing a weight
vector of length m w = {w1, . . . , wm} that contains the weight for each data point
di. Weighted least squares is thus denoted

vary P such that
∑(

ri
wi

)2

is minimized

If wi = 1 for all i, then we have the same model as before.
With historical time-series data, a more accurate analysis may be achieved by

focusing on “quiet” periods and excluding unrepresentative data. For example,
an analysis of nuclear testing data might be improved by excluding data from the
turbulent years around the signing of the Nuclear Test Ban Treaty. Exclusion is
accomplished by setting wi =∞ for certain values of i. This is sometimes referred
to as “masking” data, as we are hiding some of the points from the fitting engine.

Loglet Lab accommodates masking of the data. However, it does not allow use
of user-specified weight vectors, though this functionality could be added in the
future.

5.2. French Mobility: an example. This example illustrates logistic analysis of
a data set with several components and masking. Figure 8 presents the results of
an analysis of historical time-series data of French motorized mobility5. Periods of
conflict, such as the World Wars and Great Depression cause substantial deviations
from normal activity; analysis of long term trends, then, should focus on the years

5Source of data: Arnulf Grübler, IIASA, Laxenburg, Austria
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outside of these periods. That said, for this analysis, we excluded the data between
1912 and 1950. Accordingly, the weights w for the corresponding data points were
set to ∞.

We posit logistics driven successively by the diffusion of homes, railroads, and
automobiles. Figure 8a shows the data set D (circles) and the estimated fitted
curve N(t,P), where

P =

 53 322 1870
26 1291 1918
29 12254 1970

 .
The values in the middle column suggest rail quadrupled French mobility over

horses, and autos tenfold over rail. We could posit another loglet driven by aviation
and high speed rail.

5.3. Confidence Intervals on the Estimated Parameters: The Bootstrap.
An important question to ask of a least-squares fit is “How accurate are the esti-
mated parameters for the data?”

In classical statistics, we are accustomed to having at our disposal not only a
single value for an estimated parameter, but also a confidence interval (CI) within
which its “true” mean is expected to lie. To ascertain the statistical errors of esti-
mated parameters, the errors of the underlying data must be known. For example,
if we know that the measurement errors for a particular dataset are normally dis-
tributed (a common assumption) with a known variance, we can estimate the error
of the parameters.

However, for historical data sets, it is often impossible to know the distribution
and variance of the errors in the data, and thus impossible to estimate the error
in the fit. However, the bootstrap method [18] provides a means for recreat-
ing and resampling data using Monte Carlo methods. While the effectiveness of
the bootstrap method has been known for decades, its implementation requires
computational power largely unavailable until recently but now common on PC’s.

The bootstrap method uses the residuals from the least squares fit to synthesize
data sets. We generate, say, 200 data sets and fit a curve to each set, giving us 200
sets of parameters. By the Central Limit Theorem, we assume the bootstrapped
parameter estimates are normally distributed around a sample mean. From these
sets we can proceed to compute confidence intervals for the parameters. From the
confidence intervals of a parameter, we can form a confidence region which contains
the set of all curves corresponding to all values of that parameter.

For a data set D0 with m points, we first estimate the loglet parameters P0 using
the least-squares algorithm described above and calculate the residuals R. Then
we synthesize nboot data sets adding R∗i , a vector containing m residuals chosen at
random (with replacement) from R:

D∗i = N(t,P0) + R∗i

For each D∗i , the bootstrap parameters P∗i are estimated. In Loglet Lab, the default
value for nboot is 200, but this number can be varied depending on the number of
data. Larger datasets may require more runs for accurate statistics. The estimated
parameters from each fit are stored in a three-dimensional matrix Pboot.

Because the distribution of the parameters in Pboot is assumed to be normal, the
95% CI for any parameter pij in Pboot can be computed from the mean µij and
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Figure 9. 95% bootstrap confidence intervals on the estimated
parameters for the growth of a sunflower. The left side (A-D)
shows the C.I. using all time series data, the right side (E-H) shows
the C.I. obtained by masking the last five data points. Data from
Thornton [16].

standard deviation σij :

95% CI = (µij − 1.96σij , µij + 1.96σij)

Figure 9 shows a bootstrap analysis of the Growth of a Sunflower (a “classic”
logistic fit, available in the Loglet Lab gallery). Panel 9A shows the sunflower data
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fitted with a single logistic, with the parameter values estimated using the least-
squares algorithm, ∆t = 50, κ = 261, and tm = 34. Panels 9B, C, and D show
histograms of the distributions of each parameter as determined by 1000 iterations
of the bootstrap algorithm described above, along with the mean and 95% C.I.
marked by the solid lines.

To show how the completeness of a data set influences the confidence interval,
Panel 9E fits a single logistic to the same data, but now with the last five data
points masked. The upper and lower solid lines show the 95% CI. on the value of
κ. Panels 9F, G, and H show the histograms and 95% CI; notice how the CI’s have
widened. Because the fit is now on a data set that has not reached saturation, the
prediction of the eventual saturation κ is less precise.

When performing a bootstrap analysis in Loglet Lab, the user should inspect the
residuals for outliers and other suspect data points, because an anomalously large
residual value can unduly undermine the bootstrap. If D0 is very noisy or contains
many outliers, then each D∗i synthesized from it will be even noisier, producing
unrealistic CI’s.

6. The Logistic Substitution Model

In our Introduction we promised that loglets could analyze the rise, leveling, and
fall of competitors substituting for one another. The “species” do not have to be
organisms in an ecosystem; rather, they can be technologies and products competing
in a market. For example, we can think of different modes of transportation (such as
horses, trains, cars, and airplanes) as competing in the same market. Our discussion
will focus on competing technologies rather than species.

The logistic substitution model describes the fraction of the niche or market
share of the competitors. The life cycle of a competitor can be partitioned into three
distinct phases: growth, saturation, and decline. The growth and decline phases
represent logistic growth processes, which as we will see, influences the saturation
phase.

The assumptions behind the logistic substitution model, as developed by Naki-
cenovic and Marchetti[19, 20], are:
• New technologies enter the market and grow at logistic rates.
• Only one technology saturates the market at any given time.
• A technology in saturation follows a non-logistic path that connects the period

of growth to its subsequent period of decline.
• Declining technologies fade away steadily at logistic rates uninfluenced by

competition by new technologies.
The first assumption implies that growth can be modeled with an S-shaped

logistic. The fourth also implies that the decline phase can also be modeled with a
logistic with a negative ∆t. The second and third allow us to determine saturation
behavior by competition from emerging technologies.

As an example, we apply the logistic substitution model to the American record-
ing media market. (This example is also featured in the Tutorial; these data are
included with the Loglet Lab software, along with other data which illustrate con-
cepts of logistic analysis.) The shift in market dominance from vinyl records (LPs)
to cassettes to compact discs (CDs) proved to be a remarkably orderly substitution,
as can be seen in Figure 10 which plots the number of LPs, cassettes, and CDs sold
from 1977 to 1996. Because the logistic substitution model uses market shares as
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Figure 10. Unit sales of U.S. music recording media. Source of
data: [21].

opposed to absolute, it is general enough to be useful for illustrating competition
of species, products, or technologies in systems where the assumptions of logistic
growth and decline hold.

6.1. Numerical methods for logistic substitution. Now we present the math-
ematical methods used by the logistic substitution modeling engine.

Suppose we have n technologies competing in a market over the course of m
years. Our data representation now becomes a set of n vectors of length m, which
can be stored in an m×n matrix column-wise. To proceed with the model, the first
step is to transform the raw data, dij , into fractional shares Frij of the market:

Frij =
dij
n∑
k=1

dkj

Secondly, the fractional shares Frij are transformed using the previously de-
scribed Fisher-Pry transform

FFP ij = FP (Frij) =
Frij

1− Frij
.

Recall that under the Fisher-Pry transform, an S-shaped logistic becomes a straight
line when plotted on a semi-log graph; data which grow (or decline) logistically will
appear to grow (or decline) linearly when transformed.

The logistic substitution model generates substitution curves, L1, L2, . . . , Ln,
that correspond to the fractional market share data Fr1, F r2, . . . , F rn. The smooth
curves follow the market share through the three substitution phases: logistic
growth, non-logistic saturation, and logistic decline.
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Figure 11. Fitted logistic substitution of US music recording me-
dia. Source of data: [21].

The first step in generating these curves from the logistic substitution model is
to fit a curve to the growth phase of each technology. (Alternatively, as when data
for the growth phase is unavailable for a particular technology, we fit a curve to its
decline phase.) Reiterating from above, because we are working in the Fisher-Pry
transform space, then

ln
Li

1− Li
= − ln 81

∆ti
(t− tmi)

is linear, and we can estimate the parameters for such a curve with linear regression.
As before, ∆ti is the characteristic growth time for the ith technology, and tmi is
the midpoint of the ith technology’s period of growth or decline.

Note that for the logistic substitution model, we use a logistic with only two
parameters, because the third parameter, saturation level, κ, is fixed at 1, or 100%.
Without the introduction of a new technology, the last technology in the growth
phase would grow to a 100% market share. If a new technology is introduced, its
growth must come at the cost (primarily) of the leading technology, causing it to
saturate and decline.

For each technology, it is necessary to specify the time window that represents
its logistic growth (or decline). Within this time window are the data that will be
used to estimate the parameters for the logistic that we just described. Figure 11
shows the logistic substitution model for the recording media data. The years 1975
to 1985 were used to estimate the logistic decline phase of LPs. The years 1977 to
1985 were used to model the logistic growth phase of cassettes. The years 1988 to
1996 were used to estimate the parameters for the logistic growth phase of CDs.

The growth and decline phases can be represented by logistic curves, but this
is not the case for the saturation phase. Because only one technology, Ls, can be
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Figure 12. Fitted logistic substitution of US music recording
media with the introduction of a hypothetical new technology
(DVDs). Source of data: [21].

saturating at a time, its market share can be calculated by subtracting the sum of
the shares of all the other technologies–which must be known, since they must be
either growing or declining–from unity (100%):

Ls = 1−
∑
i 6=s

Li.

How do we know when each phase begins or ends? If

ys(t) = ln
Ls(t)

1− Ls(t)
,

then the termination of the saturation phase comes at time t at which

y′′s (t)
y′s(t)

is at a minimum. (12)

When the saturation phase for a technology ends, it proceeds directly into its decline
phase, and the saturation phase for the next technology immediately commences.
The two parameters for the logistic decline phase of the curve are given by:

∆ts =
ln(81)
y′s(t)

tms = ln
(ys(t)− ln(81)

∆t t)
ln(81)

∆t

In Figure 11 the LPs are in the logistic decline phase, cassettes are in transition,
and CDs are in logistic growth.
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6.2. Assessing the possible impact of new technologies. One motivation in
studying history is anticipating the future. We shall now discuss how to visualize
the impact of new technologies on market shares.

Rather than using regression, we can specify the parameters for a logistic. This
is useful when few or no data are available, as is the case for new technologies
seeking to be market leader.

Continuing with the example of recording media, we consider a prospective com-
petitor to follow CDs: the digital versatile disk, or DVD, which has the same size
as a CD with about 10 times the storage capacity. We used Loglet Lab to estimate
the ∆ti and tmi that characterize the speed and span of the rise of LPs, cassettes,
and CDs. Based on these numbers, we could conjecture similar values of ∆t4 and
tm4 for DVDs. We chose a ∆t4 of 13 years and a tm4 of 2012 to generate Figure
12, which shows how the new competitor would affect the market that we had
presented in Figure 11.

Figure 13 shows the example of competition and substitution among canals,
rails, roads, airways, and a possible competitor, magnetically levitated trains (ma-
glevs)6. Here, market share is the length of existing canals, rails, roads, and air
routes, not unit sales. This figure also demonstrates familiar competitors (modes
of transportation) over a much longer time span than the recording media example
and increases the competitors to five. The estimated rates of change of kilometers
of each competitor and of the whole American transportation infrastructure illumi-
nate the forces at work. This history of substitution begins in the era of the Erie
Canal and extends a century and half into the future.

6.3. Implementation in Loglet Lab. The Loglet Lab software condenses the
logistic substitution model into two steps. First, it performs a Fisher-Pry transform

6For an analysis of US transport infrastructure using the logistic substitution model, see [22].
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on all of the data to assist in the identification of the growth (and decline) phases.
Second, it asks the user to give either a time window for the growth (or decline)
phase or a set of parameters (∆t and tm) for each technology. Using this input,
the logistic substitution engine fits a curve to the growth (or decline) phase of each
technology, determines the saturation point based on the criterion in equation (12),
and plots the substitution curves.

Loglet Lab can accommodate a large number of data sets, so users can easily
add one or more hypothetical competitors and envision several different scenarios
for the evolving markets.

7. Conclusion

The Loglet Lab software package provides a means of running the models as
described in this paper by making the mechanisms behind the model transparent to
the user. Ease of use allows us to envision several scenarios in a manner of minutes,
as we can quickly run these models several times with different parameterizations.
Combining this with a diverse range of visualizations, Loglet Lab offers a rich
analysis of data sets that exhibit complex growth.

Yet underlying the complexity of these models are parameters with concrete
and, more importantly, informative interpretations. The emphasis of loglet analysis
becomes not building or running the model, but interpreting it.

Acknowledgements: We thank Arnulf Gruebler, John Helm, Cesare Marchetti,
Nebojsa Nakicenovic, Paul Waggoner, and Iddo Wernick.

Appendix A. Loglet Lab Software Implementation

The algorithms and methods described in this paper were originally implemented
in ANSI C and the mathematics package MatLab [23] in a Unix computer environ-
ment. Many of the algorithms are based on the C source code presented in Press,
et al. [24] and Engeln-Müllges-Uhlig [25].

The Loglet Lab software project’s goal is to build a graphical user interface
(GUI) for these algorithms for use on a modern operating system, namely Microsoft
Windows 95 and NT (collectively, the “Win32” platform). To this end, Loglet
Lab was built in Microsoft’s Visual C++ integrated development environment and
features a spreadsheet control developed by Visual Components that provides a
familiar interface for data entry. Loglet Lab allows users to cut-and-paste their
data between spreadsheets such as Excel. Appendix B describes the current state
of this project.

Other advanced regression methods (e.g., Marchetti’s method for robust weighted
regression, or CM regression) have been implemented in C or MatLab, but they
have yet to be ported to the Win32 environment.
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Appendix B. Current Status of the Loglet Lab for Windows

Software Package

As of 1 July 1999, Loglet Lab for Windows 95 and Windows NT is up to version
1.1.6. A Tutorial for Loglet Lab is also available [10]. The software is available from
our web site: http://phe.rockefeller.edu. Using this version of Loglet Lab, a
user can:
• fit one or more logistics, including declining logistics, to time series data of

arbitrary length using a non-linear least-squares regression algorithm as de-
scribed in section 5. For this purpose, a “Logistic Fitting Wizard” can suggest
initial values for the parameters of each logistic as the point of departure for
the fitting engine;
• plot the data with its fitted component logistic(s);
• plot the residuals as described in section 4.4;
• plot the data with the Fisher-Pry transform applied, linearizing the time-

series data and its fitted logistic(s);
• plot the “bell” view described in section 4.3, which graphs the derivative (rate

of change) of a component logistic and the discrete rate of change of the data;
• determine confidence regions for each loglet parameter by using the Bootstrap

method, a modern technique which utilizes Monte Carlo methods to determine
the statistical error associated with each fitted parameter.
• apply a logistic substitution model to multiple sets of time-series data, in-

cluding the capacity to add hypothetical competitors.
• extrapolate a model into the past or future;
• annotate the graph (i.e., add a title and label the axes);
• print graphs using any supported Windows printer;
• export or import data to and from Microsoft Excel, or as plain text;
• consult online Help files; and
• peruse through a “Data Gallery” of “classic” sets of logistic time-series data.
Possible improvements for future versions of Loglet Lab include:
• adding an “Undo” function so users can correct their mistakes;
• alternative regression methods (robust, CM);
• export a graph for use on the World Wide Web or in presentation applications

such as Microsoft PowerPoint;
• adding the option of constraining parameters to a range of values, as opposed

to holding to a single constant value;
• alternative algorithms for providing initial values of parameters;
• visual fitting of component logistic models, where the user interactively

changes the parameters using a mouse. A prototype for this can be found at
http://phe.rockefeller.edu/applets/index.html;
• improving spreadsheet functionality (e.g., formulas); and
• improving the general user interface.
We hope users will send us suggestions to improve Loglet Lab, the Tutorial, and

this paper. Please send comments (and bug reports) to loglet@phe.rockefeller.edu.
We will also post information on the status of Loglet Lab on our
web site: http://phe.rockefeller.edu/.
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