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Abstract. We introduce the equivalent sources for the Helmholtz equation and estab-
lish their connections to the naturally induced sources for the sound-soft, sound-hard,
and impedance obstacles for the inverse scattering problems of the Helmholtz equation.
As two applications, we employ the naturally induced sources to improve the bound-
ary integral equation formulations for the obstacle scattering problems, and develop
a unified, straightforward approach to establishing boundary conditions governing the
domain derivatives of scattered waves for the soft, hard, and impedance obstacles.
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1 Introduction

The subject of this paper is on the forward and inverse obstacle scattering problems for
the Helmholtz equation. We will introduce the notion of naturally induced sources in the
scattering by an obstacle, and use it to reformulate the standard boundary integral equa-
tions for the forward scattering problems. We also use it to establish a unified approach
to the domain derivatives for the inverse obstacle scattering problems.

An equivalent source for a time harmonic wave u0 in a domain D is made of monopoles,
dipoles, or their combination on the boundary which reproduces the wave in the domain.
The problems of determining the equivalent sources given u0 is referred to as the interior
(scattering) problems. There are three standard interior problems for the monopoles,
dipoles, and their linear combination.
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If the domain is the support of an obstacle, of sound-soft or sound-hard or impedance
type, the scattered wave can be expressed as the potential of the single or double or
combined layer, respectively. These monopole, dipole, and combined sources are referred
to as the naturally induced sources for the soft, hard, and impedance obstacles, respec-
tively. Thus, for instance, double-layer potential for the exterior Neumann problem of the
Helmholtz equation employs the naturally induced (dipole) sources, whereas combined
potential for the exterior Dirichlet problem does not.

The interior-exterior connection. We will establish connections between these inte-
rior and exterior problems by identifying the naturally induced sources for the soft, hard,
impedance obstacles with the equivalent sources of monopole, dipole, combined types,
respectively. There are two applications of the interior-exterior connection.

Reformulate scattering problems. It is typical in the scattering problems that u0

arises from known sources outside D, so both u0 and ∂nu0 are available on the boundary.
We will make use of this flexibility and employ the equivalent sources to rewrite boundary
integral equations for the exterior problems. The reformulated problems are more con-
venient to solve, or their solution - once obtained - easier to process, than the standard
approaches.

Domain derivatives. The calculation of domain derivative, or more generally of the
Frechet derivative of the scattered wave with repect to perturbation to the bundary of
the obstacle, is an essential step for the inverse obstacle problem. With the help of the
equivalent sources, we will present a unified, straightforward approach to establishing
boundary conditions for the domain derivatives of the scattered waves off the soft, hard,
and impedance obstacles. The domain derivatives for these three scattering problems, and
for the transmission problem, have already been characterized by a number of authors,
initiated by the work of Kirsch [3]; see Haddar and Kress [4] for a quite complete description
of the existing work.

Organization of paper. Section 2 provides preliminary tools. Section 3 introduces the
equivalent sources and naturally induced sources, and makes the interior-exterior connec-
tion. In Section 4 we reformulate the obstacle scattering problems. Section 5 presents
a straightforward, unified approach to calculating the boundary values of the domain
derivatives for the soft, hard, and impedance obstacles.

2 Analytic machinery

Let D be a domain and k > 0 be the wave number. Throughout the paper, we work with
smooth boundary ∂D; we also assume that the incident wave u0 is generated by sources
away from the boundary, so that the classical theory for layer potentials holds and that the
scattering solutions are smooth. This section summarizes basic facts for layer potentials
and perturbational properties of the boundary ∂D.
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2.1 Jump conditions

Denote by G the fundamental solution of the Helmholtz equation

∆w + k2 w = 0, x ∈ D, (2.1)

so that

G(x, ξ) =

{

i
4
H0(k‖x − ξ‖), in R

2,

eik|x−ξ|/(4π|x − ξ|), in R
3.

(2.2)

Let p, q be the single and double layer potentials of smooth density σ

p(x) =

∫

∂D

G(x, ξ)σ(ξ) dS(ξ), (2.3)

q(x) =

∫

∂D

∂G(x, ξ)

∂n(ξ)
σ(ξ) dS(ξ). (2.4)

We have the four well known [1,2] jump conditions across the boundary

p+ − p− = 0, ∂nq+ − ∂nq− = 0, q+ − q− = σ, ∂np+ − ∂np− = −σ. (2.5)

Lemma 2.1. Let p, q be the single and double layer potentials of a smooth density σ. Let
µ, λ be scalars. Then

(µ ∂n + iλ) (µ q + iλ p)(x+) = (µ ∂n + iλ) (µ q + iλ p)(x−). (2.6)

Proof. Using all four jump conditions we have

(µ ∂n + iλ) [µ q + iλp](x+) =
[

µ2∂nq + iµ λ∂np + iµ λq + (iλ)2p
]

(x+)

=
[

µ2∂nq + iµ λ (∂np − σ) + iµ λ (q + σ) + (iλ)2p
]

(x−)

=
[

µ2 ∂nq + iµ λ∂np + iµ λq + (iλ)2p
]

(x−)

= (µ ∂n + iλ) [µ q + iλp](x−),

where in the second step we have used (2.5). This completes the proof of this lemma.

2.2 Surface perturbation

Let ξ = x(0, 0) be a point on the smooth surface Γ = {x(s, t)} locally parameterized by
the arclength s, t of the two normal sections at ξ along the two principal directions τ1, τ2.
Denote by κ1, κ2 the curvatures at ξ of the two sections; thus κ = (κ1 + κ2)/2 is the mean
curvature. We orient τ1, τ2, and the unit normal n of Γ at ξ so that

n = τ1 × τ2, [τ1, τ2] = [xs, xt], [ns, nt] = [κ1τ1, κ2τ2]. (2.7)

Given a smooth function h : Γ 7→ R
1 and a real number ε, we perturb Γ by εh in the normal

direction to obtain Γε = {xε = x(s, t)+εh(s, t)n(s, t)}. Straightforward calculations along
the principal directions yield
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Lemma 2.2. Let dS = ds dt be the surface area element at a point ξ ∈ Γ. Let dSε =
Jε ds dt be the surface area element at the corresponding point ξε = ξ+εhn on the perturbed
surface Γε. Then

[∂sxε, ∂txε] = [ (1 + εhκ1)τ1 + εhsn, (1 + εhκ2)τ2 + εhtn ], (2.8)

∂sxε × ∂txε = (1 + 2εhκ)n − εhsτ1 − εhtτ2 + O(ε2), (2.9)

Jε(ξ) = |∂sxε × ∂txε| = (1 + 2εhκ) + O(ε2), (2.10)

J ′(h; ξ) =:
dJε(ξ)

dε

∣

∣

∣

∣

ε=0

= 2κh, (2.11)

n′(h; ξ) =:
dnε(ξ)

dε

∣

∣

∣

∣

ε=0

= −hsτ1 − htτ2. (2.12)

Lemma 2.3. Let ∇̆ be the surface gradient opertor on Γ. Then the Helmholtz equation
(2.1) becomes

[

∂2
n + 2κ∂n + ∇̆2 + k2

]

w = 0. (2.13)

Sketch of the proof: Parameterizing the neighborhood of the surface by

y(r, s, t) = x(s, t) + r n(s, t), x ∈ ∂D, (2.14)

we rewrite the Laplacian in the orthogonal curvilinear coordinates (r, s, t)

∂2
r + 2κ∂r + ∂2

s + ∂2
t (2.15)

3 The equivalent sources

We introduce the equivalent and naturally induced sources, and use them to establish
connections between the interior and exterior scattering problems.

3.1 The interior problems: equivalent sources

Let us refer to the sources outside D, which generate the incident wave u0, as the primary
sources. As is well known, it is possible to use equivalent sources on ∂D to reproduce the
same incident wave u0 inside D; the Green’s representation theorem

u0(x) =

∫

∂D

(

∂nu0(ξ)G(x, ξ) − u0(ξ)
∂G(x, ξ)

∂n(ξ)

)

dS(ξ) (3.1)

for example, does it with monopole density ∂nu0 and dipole density u0 on ∂D.

We introduce three interior problems as to determine the equivalent sources α, β, and
γ such that their corresponding single, double, and combined layer potentials all match
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u0 inside D

u0(x) =

∫

∂D

G(x, ξ) α(ξ) dS, x ∈ D, (3.2)

u0(x) =

∫

∂D

∂G(x, ξ)

∂n(ξ)
β(ξ) dS, x ∈ D, (3.3)

u0(x) =

∫

∂D

[

∂G(x, ξ)

∂n(ξ)
+ iλG(x, ξ)

]

γ(ξ) dS, x ∈ D, (3.4)

with λ 6= 0 a real number. As is well known, the three problems have unique and smooth
solutions, see [1], or see the proof of Theorem 3.1.

3.2 The exterior-interior connection

Let D be the domain of the obstacle, and u0 be the incident wave. Let vj and uj = u0+vj,
j = 1, 2, 3 be the scattered and total waves for (i) sound-soft (ii) sound-hard (iii) impedance
problems:

∆vj(x) + k2vj(x) = 0, x ∈ R3 \ D̄, (3.5)

u1 = 0, ∂nu2 = 0, (∂n + iλ)u3 = 0, x ∈ ∂D. (3.6)

Together with the Sommerfeld radiation condition at the infinity, these boundary value
problems are well-posed for real numbers k > 0, λ 6= 0. It follows immediately from the
Green’s representation theorem

v(x) = −

∫

∂D

(

∂nu(ξ)G(x, ξ) − u(ξ)
∂G(x, ξ)

∂n(ξ)

)

dS(ξ) (3.7)

and [1], Section 3.7, that the scattered waves can be expressed as the layer potentials of
single, double, and combined types

v1(x) =

∫

∂D

G(x, ξ) a(ξ) dS, (3.8)

v2(x) =

∫

∂D

∂G(x, ξ)

∂n(ξ)
b(ξ) dS, (3.9)

v3(x) =

∫

∂D

[

∂G(x, ξ)

∂n(ξ)
+ iλG(x, ξ)

]

c(ξ) dS, (3.10)

and that the densities are

a = −∂nu1, b = u2, c = u3. (3.11)

Definition 3.1. The densities a, b, c are referred to as the naturally induced sources for
the sound-soft, sound-hard, and impedance obstacles, respectively.
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The three exterior obstacle scattering problems of determining the naturally induced
sources a, b, c are identical (up to a sign) to the three interior problems of determining the
monopole, dipole, and combined equivalent sources.

Theorem 3.1. Let k > 0, λ 6= 0 be real numbers, and ∂D be smooth. Let α, β, and γ be
the equivalent sources of monopole, dipole, and combined types for the incident wave u0.
Let a, b, c be the naturally induced sources. Then

a = −α, b = −β, c = −γ. (3.12)

Proof. These are direct consequences of the jump conditions (2.5): v1, ∂nv2, and (∂n+iλ)v3

are all continuous across ∂D. To illustrate, we only prove the last one, and it remains to
verify the impedance boundary condition for v. Indeed,

(∂n + iλ) v3(x
+)

= − (∂n + iλ)

∫

∂D

[

∂G(x+, ξ)

∂n(ξ)
+ iλG(x+, ξ)

]

γ(ξ) dS

= − (∂n + iλ)

∫

∂D

[

∂G(x−, ξ)

∂n(ξ)
+ iλG(x−, ξ)

]

γ(ξ) dS

= − (∂n + iλ) u0(x
−) = − (∂n + iλ) u0(x),

where in the second step we have used (2.6). This completes the proof of this theorem.

4 Equivalent source method for obstacle scattering

We will use the equivalent sources to rewrite boundary integral equations for obstacle
scattering. The reformulated problems are more convenient to solve, or their solution
easier to process, than the standard approaches. The integral equations we present here
are not structurally new, but they explore the flexibility in reinterpreting the incident
wave as the boundary data to rearrange the solution process.

Therefore and again, we assume that the incident wave u0 is generated by known
sources away from the boundary, so that both u0 and ∂nu0 can be evaluated on the
boundary. For simplicity, we assume that k > 0, λ 6= 0, µ 6= 0 are real numbers.

4.1 Sound-soft problem

The problem is to determine density a of (3.8), which according to Theorem 3.1 is to
determine the equivalent monopole source α of (3.2). Applying ∂n + iµ to (3.2) from the
interior side of ∂D we obtain the second kind integral equation for α

α(x)/2 +

∫

∂D

[

∂G(x, ξ)

∂n(x)
+ iµG(x, ξ)

]

α(ξ) dS = h(x),

with h = (∂n + iµ)u0,

(4.1)
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or (I + K ′ + iµ S)α = 2h in the standard operator form - the adjoint of the well known
combined potential equation, where µ is the combination coefficient of the single and
double layer potentials. A nonzero, real µ makes (4.1) uniquely solvable [1]. This equation
was previously used by Burton and Miller [5]. Thus a second kind integral equation, free of
resonances, has been gained in spite of our using single layer potential. The scattered wave
(3.8) is easier to process, such as taking derivative on or near the boundary numerically,
than the standard combined potential approach to the sound-soft problem.

4.2 Sound-hard and impedance problems

In the following treatment, the sound-hard problem is a special case of the impedance
problem with λ = 0; we will thus only consider the latter.

We restrict x on ∂D in (3.4), and obtain the second kind equation for γ

−γ(x)/2 +

∫

∂D

[

∂G(x, ξ)

∂n(ξ)
+ iλG(x, ξ)

]

γ(ξ) dS = u0(x), (4.2)

or (−I + K + iλ S)γ = 2u0, which is the adjoint of the single-layer approach to the
impedance problem. Since the equation always has a solution γ = u3, resonances occur if
and only if k is an interior Dirichlet eigenvalue.

The advantage, in the absence of resonance, is obvious: the impedance condition
is treated as if the Dirichlet condition is typically treated with the combined potential
equation; no hypersingularity, no regularization required.

To remove the spurious modes, whose number is finite, we may choose the same number
of interior points {xj , j = 1 : p}, and augment (4.2) with the p additional equations

∫

∂D

[

∂G(xj , ξ)

∂n(ξ)
+ iλG(xj , ξ)

]

γ(ξ) dS = u0(xj) (4.3)

each arising from a monopole source at xj inside D. In practice, some fixed number of
interior points will be employed, whether or not k is an interior Dirichlet eigenvalue. The
resulting over determined, but consistent, linear system can be solved directly with QR
factorization, or iteratively with conjugate gradient method for the normal equations.

The augmenting equations (4.3) are very similar to the null field method, except that
here we do not put all the points in the interior, so that the equations (4.2) and (4.3) are
still of the second kind.

5 Domain derivative of scattered waves

We present a unified, straightforward approach to deriving boundary conditions for the
domain derivatives of the scattered waves off the soft, hard, and impedance obstacles.
As noted in Section 1, these derivatives have already been characterized, see [4] for an
extensive list of existing work.
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In agreement with Section 2.2, we denote by ∂Dε = {xε = x + εhn |x ∈ ∂D } the
perturbed boundary, by vε the perturbed scattered waves, and so on, so that the perturbed
(3.8)-(3.10) can be expressed by the single formula

vε(x) =

∫

∂D

[

µ nε(ξ) · ∇ξε
G(x, ξε) + iλG(x, ξε)

]

σε(ξ)Jε(ξ) dS =: Mε(σε) (5.1)

for the three cases

v = v1, σ = −∂nu1, µ = 0, λ = −i (soft), (5.2)

v = v2, σ = u2, µ = 1, λ = 0 (hard), (5.3)

v = v3, σ = u3, µ = 1, λ ∈ R
1 (impedance). (5.4)

Assuming their existence and smoothness, we now derive boundary conditions for the
domain derivatives

v′(h;x) =:
dvε(x)

dε

∣

∣

∣

∣

ε=0

(5.5)

of scattered waves v1, v2, v3 for the sound-soft, sound-hard, and impedance obstacles.

Theorem 5.1. Let k > 0, λ 6= 0 be real numbers. Let ∂D and h : ∂D 7→ R
1 be smooth.

Let uj = u0 + vj , j = 1, 2, 3, be the total waves of the sound-soft, sound-hard, impedance
obstacle D. Then the domain derivatives v′j(h; ·), should they exist and be smooth, are
themselves scattered waves off the obstacle D and subject to the boundary conditions

v′1(h;x) = −h(x) ∂nu1(x), (5.6)

∂nv′2(h;x) = ∇̆ ·
[

h(x)∇̆u2(x)
]

+ k2h(x)u2(x), (5.7)

(∂n + iλ)v′3(h;x) = ∇̆ ·
[

h(x)∇̆u3(x)
]

+
(

k2 − λ2 − 2iλκ
)

h(x)u3(x), (5.8)

where ∇̆ is the surface gradient.

Proof. For x 6∈ ∂D, differentiate (5.1) with the chain rule to obtain

v′(h;x) =
dMε(cε)

dε

∣

∣

∣

∣

ε=0

=

∫

∂D

σ(ξ)
{

µn′(h; ξ) · ∇ξ + µh∂2
ν + iλh ∂ν

}

G(x, ξ) dS + M0

(

σ′ + σ J ′
)

,

where ν denotes the normal n(ξ), as opposed to n(x). Using (2.12) and (2.13) to process
the first two terms, and integrating by parts using the Gauss surface divergence theorem,
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we obtain
∫

∂D

σ(ξ)
{

n′(h; ξ) · ∇ξ + h∂2
ν

}

G(x, ξ) dS

=

∫

∂D

σ(ξ)
{

− ∇̆h · ∇̆ξ − h
(

2κ∂ν + ∇̆2
ξ + k2

)}

G(x, ξ) dS

=

∫

∂D

{

∇̆ ·
(

σ∇̆h
)

− 2hσ κ∂ν −
(

∇̆2 + k2
)

hσ
}

G(x, ξ)dS

= −

∫

∂D

{

∇̆ ·
(

h∇̆σ
)

+ k2hσ + 2hσ κ∂ν

}

G(x, ξ)dS,

where in the second step we have used (2.12)-(2.13) and in the third step we have used
the Gauss theorem. Thus,

v′(h;x) = M0

(

σ′ + σ J ′
)

+

∫

∂D

{

(iλ − 2µκ)hσ∂νG − µ
[

∇̆ ·
(

h∇̆σ
)

+ k2hσ
]

G
}

dS.

Observe that v′(h;x) = 0, x ∈ D, since v(x) = vε(x) = −u0(x), x ∈ D ∩ Dε. Now bring x
back to the boundary, and use jump conditions to simplify; thus for x ∈ ∂D

v′(h;x+) = v′(h;x+) − v′(h;x−) =:
⌈

v′(h;x)
⌋

=
⌈

M0

(

σ′ + σ J ′
)⌋

+

+

[
∫

∂D

{

(iλ − 2µκ)hσ ∂νG − µG
[

∇̆ ·
(

h∇̆σ
)

+ k2hσ
]

}

dS

]

.

By taking the normal derivative on the boundary we have

(µ ∂n + iλ)v′(h;x+) =
⌈

(µ ∂n + iλ)M0

(

σ′ + σ J ′
)

⌋

+

+

[

(µ ∂n + iλ)

∫

∂D

{

(iλ − 2µ κ)hσ ∂νG − µ G
[

∇̆ ·
(

h∇̆σ
)

+ k2hσ
]

}

dS

]

.

The first part vanishes since (µ ∂n + iλ)M0 is continuous across the boundary due to
Lemma 2.1. The second part has four terms, of which only two jump across the boundary

(µ ∂n + iλ)v′(h;x+)

=

[
∫

∂D

{

iλ(iλ − 2µ κ)hσ
∂G(x, ξ)

∂n(ξ)
− µ2

[

∇̆ ·
(

h∇̆σ
)

+ k2hσ
] ∂G(x, ξ)

∂n(x)

}

dS

]

= µ2 ∇̆ ·
(

h∇̆σ
)

+ (µ2 k2 − λ2 − 2iµ λκ)hσ.

Now (5.6)-(5.8) follow immediately from (5.2)-(5.4)

In the proof the smoothness of σ′ is assumed, which is valid because

dvε(xε)

dε

∣

∣

∣

∣

ε=0

= v′(h;x) + h∂nv(x) (5.9)

d∂nvε(xε)

dε

∣

∣

∣

∣

ε=0

= Λ

[

dvε(xε)

dε

]

ε=0

− ∇̆v · ∇̆h, (5.10)

where Λ : C(∂D) 7→ C(∂D) is the Dirichlet-to-Neumann map.
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Remark 5.1. By Theorem 5.1, the domain derivatives v′j(h; ·) can be obtained as solu-
tions of boundary integral equations for the sound-soft, sound-hard, impedance scattering
problems for the obstacle D; see, e.g., [1] for more details on these boundary integral
equations.
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