Environmental Trends

Jesse H. Ausubel

In the United States in 1900, environmental hazards still caused about half of all deaths. Stagnant, contaminated water was a happy home for cholera, typhoid, and other water-borne diseases. In 1833, when Ralph Waldo Emerson was working on his first book, *Nature*, a cholera pandemic killed 5 to 15 percent of the population in many localities. Even more killers came by air, including diphtheria, tuberculosis, and whooping cough, as people crowded into poorly ventilated homes and workplaces. Henry David Thoreau, the author of *Walden*, was only 45 when he died of bronchitis and tuberculosis in 1862. As late as 1876, diphtheria accounted for about 10 percent of all deaths in Massachusetts.

By 1940 the combination of water fluoridation, chlorination, and sewage treatment stopped most of the aquatic killers in the United States. Refrigeration in homes, shops, trucks, and railroad boxcars took care of much of the rest. Replacement of hovels, tenements, and sweatshops with larger, better heated and ventilated buildings drove most of the aerial killers.

Now, increased longevity, high incomes, and large populations have been achieved in every class of environment.

Energy

In energy the key words are "decarbonization" and rising energy efficiency. Per constant dollar, the United States has paid its carbon intensity of gross domestic product per capita from about three times in 1800 to about three-tenths of a kilo in 1995. Carbon matters because burning it to raise energy can change the global climate as well as harm the local air. Carbon enters the energy economy in wood, coal, oil, and gas, all of which in fact consist of blends of carbon and hydrogen atoms. Fortunately, the truly desirable, clean element in these fuels for energy generation is not carbon, but hydrogen, and the historical record reveals that for two hundred years the world has progressively lightened its energy diet by favoring hydrogen atoms over carbon in our hydrocarbon fuels. The outlook for the next several decades is that we will rely heavily on natural gas, which is rich in carbon and rich in hydrogen, before turning to pure hydrogen fuels, generated by hydropower or solar means.

The displacement of carbon-riching the largest single environmental challenge facing the planet. The good news is that a few decades most of our devices and practices will change, and that major new energy systems can become feasible in fifty to one hundred years. It is also good news that some aspects of technological bandwidth can learn from the costly experiments of others and that so society need be excluded from the Working. The present carbon intensity of the Clinton and Indian economies resembles those of the United States and Europe at the onset of industrialization in the 19th century, but even they are on the path toward decarbonization and improved efficiency.

![Graph showing carbon intensity over time](image-url)
Agriculture

Agriculture is the greatest transformer of the planet. Dirt, paved roads, and the rest of the build environment cover less than 5 percent of the land in the 49 contiguous states of the United States. Crops occupy about 20 percent of U.S. land pasture 25 percent. Agriculture has consumed forests, drained wetlands, and violated habitats.

Yet since mid-century the all-uses of land used for agriculture globally has remained stable, and the slagging few for further reductions. A shift away from eating meat to a vegetarian diet could roughly halve our need for land.

More likely, diets will increase in meat and calories. Under such conditions, the key will be the continuation of gains in yield resulting from a clutch of innovations including seeds, chemicals, and irrigation. Joined through timely information flows and better-organized markets. In fact, US wheat yields have tripled since 1955, and corn yields have quintupled. The world on average grows only about half the corn per hectare of the average Iowa farmer. Who in turn grows only about half the corn of the top Iowa farmer. Importantly, although the performance of all has risen steadily for decades, the ratio separating them has not changed much. Even in Iowa, the average farmer is more than thirty years behind the state of the art.

When the state of the art becomes mature, however, the systems accumulate disproportionately. By raising wheat yields fivefold during the past four decades, Indian farmers have in practice scrapped for other purposes an area of cropland roughly equal to the area of the state of California.

When a reasonable outlook for the land used to grow crops for ten billion people, a probable world population sixty or seventy years hence? For instance, world grain yields use 25 percent annually between 1960 and 1994. If farmers can lift the global average yield about 1.5 percent per year over the next six to seven decades, their productivity will equal that of today's European wheat farmers. That would make it possible for ten billion people to enjoy a diet with my caloric intake of today's average American and still spare close to 2 quater of the present 1.4 billion hectares of cropland.

WINTER 1996-97
Water

Water saving goes with land saving. Water saving is evolving preindustially among consumers as well as on farms. Industrial withdrawals of water in the US have dropped steadily since 1940. Then, 14 gallons of water flowed into each dollar of output. Now the flow is less than three gallons. Better management of demand induced water use in the Boston area from 320 million gallons per day in 1973 to 240 million gallons in 1992. Absolute U.S. water withdrawals peaked about 1980. Since 1985, per capita U.S. water use has declined at an annual rate of 1.3 percent.

Materials

We can reliably project deconservation. Food decoupled from average, and fewer drops of water yielding more value. What about an accompanying dematerialization—the decline over time in the weight of materials used to meet a given economic function? This, too, would spare the environment.

In fact, the intensity of use of diverse primary materials has plummeted over the 20th century. Lumber, steel, lead, and copper have especially lost importance. Products as different as computers and beverage cans have become lighter and other smaller. A few compact discs contain the phone numbers of all U.S. homes and businesses, equivalent to the content of telephone books formerly weighing five tons. Although the tonnage numbers of products and outputs, accelerated by economic growth, raised municipal waste in the United States annually by about 1.6 percent per person in the last couple of decades, fresh per unit of GDP dematerialized slightly.

So far, trends of dematerialization are equivocal. But the potential exists to develop superior industrial ecosystems that reduce the intensity of materials use in the economy, minimize wastes and use persisting wastes as inputs to redesign existing industrial processes. Since 1990, recycling has accounted for over half the metals consumed in the United States, up from less than 30 percent in the mid 1980s. The trick is to make waste minimization a property of the industrial system even when it is not completely a property of an individual process, plant, or industry.

ISSUES IN SCIENCE AND TECHNOLOGY
Population

But there is a catch for homo faber, the toolmaker. Our technology not only scares resources. If so, our footprints on Earth would simply become lighter and lighter. Technology also expands the human niche, allowing larger populations. Family and population size is ultimately a cultural choice, although technology makes the choice more reliable. Fertility rates have been falling in most nations and are below levels needed to replace the current populations in Europe and Japan, which may implode. Perhaps the idea of the small family, which originated in France around the time of the Revolution, will become the norm worldwide after 250 years. Still, recent population growth, which paused globally at about 2 percent per year around 1970, is unprecedented. The effect is that in the coming interval of a few decades, human society will need to accommodate as many more people as already live on Earth.

After a very long preparation, our science and technology appear ready to do so. To reconcile our economy and the environment, a highly efficient hydrogen economy, in which agriculture, industrial ecosystems in which waste virtually disappears. Over the coming century, these can enable large, prosperous human populations to co-exist with the wildlife and the lessons and all that underlies them—if we are mentally prepared, which I believe we are.

Philosophy

Across the planet, attitudes toward nature, and perhaps toward one another as humans, are changing. "Green" is the new religion. Jungles and forests, previously sites of danger and depravity in popular children's stories until a decade or two ago, are now friendly and romantic. The characterization of animals, from weves to whales, has changed. Environmental saints, such as the Brazilian rubber tapper Chico Mendes, and environmental shrines, such as the Great Santatrophe at Chernobyl, begin to sanctify the landscape.

So, our minds as well as our technology seem ready. We have liberated ourselves from the environment. Now it is time to reshape the environment itself.

Jesse H. Ausubel is the director of the Program on the Human Environment at Rockefeller University. An extended version of this essay appears in Technological Trajectories and the Human Environment, Jesse H. Ausubel and H. Dale Langford, editors (National Academy Press, 1996).