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Carrying Capacity:

A Model with Logistically Varying Limits

PERRIN S. MEYER1 and JESSE H. AUSUBEL2

ABSTRACT

We introduce an extension to the widely-used logistic model of growth to a

limit that in turn allows for a sigmoidally increasing carrying capacity, that is,

the invention and diffusion of technologies which lift the limit. We study the

effect of this dynamic carrying capacity on the trajectories of simple growth

models, and we use the new model to re-analyze two actual cases of the growth

of human populations. English and Japanese examples with two pulses, or

one change in limit, appear to verify the model.

1. Simple Growth Model with a Logistically Increasing Carrying

Capacity

Finding convincing or widely agreed upon estimates and models for carrying ca-
pacity, especially for human populations, is difficult. Cohen [1] archives 26 different
attempts from a variety of fields, few of which agree on much. Most do agree that
changes in technology affect the carrying capacity of a system [2]. Evidently, new
technologies affect how resources are consumed, and thus if carrying capacity de-
pends on the availability of that resource, the value of the carrying capacity would
change. For example, raising yields has allowed the developed world to support an
increasing population while cropping a decreasing amount of land [3]. For these
reasons, models of growth for human systems based on fixed resource limits or a
single, unchanging carrying capacity are unrealistic.

Importantly, although a new technology may offer a significant increase in effi-
ciency, it does not spread instantly, but instead is adopted at a changing rate [4].
These adoption processes are often well modeled by a logistic [5]. First, the rate of
adoption is slow, as a new technology must struggle to replace a mature one. The
rate of adoption increases, usually exponentially until physical or other limits slow
the adoption. Adoption is a kind of “social epidemic.” Moreover, learning itself
can be sigmoidal: we proceed along “learning curves,” improving our performance
with experience [6]. Indeed, Schelling [7] portrays an array of logistically devel-
oping and diffusing social mechanisms. Finally, technological innovations do not
usually distribute themselves evenly through time, but instead cluster in spurts or
“innovation waves” [8]. For these reasons, we formulate a model where the carrying
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capacity κ of a system increases dynamically, but in a distinct pulse. Because the
simple logistic is well-suited as a model for learning as well as diffusion phenomena,
we model the carrying capacity κ(t) itself as a logistic function of time. Below we
develop the mathematics of this proposal and, finally, test it against the population
histories of England and Japan.

We can mathematically model a dynamic carrying capacity by extending the
logistic differential equation

dP (t)
dt

= αP (t)
(

1− P (t)
κ

)
. (1)

Here, P (t) is the population, α is the exponential growth rate parameter, and κ is
the saturation or ceiling value of the sigmoidal logistic curve. We often replace α
with a parameter we call the “characteristic duration,” or ∆t = ln(81)

α , where ∆t
refers to the time for the logistic curve to grow from 10% to 90% of saturation κ.
Specifically, we replace the constant κ in equation (1) with a function κ(t):

dP (t)
dt

= αP (t)
(

1− P (t)
κ(t)

)
. (2)

The addition of the dynamic carrying capacity κ(t) increases the complexity of
the behavior of the model, as κ(t) can be any function, and numerous extensions
have been proposed and studied over the years. Banks [9] describes models where
κ(t) has been varied sinusoidally, exponentially and linearly. Coleman [10] has
studied general forms of (2) and determined global mathematical properties. Cohen
[11] presents a model similar to (2) in his discussion of global human carrying
capacity where the carrying capacity κ(t) is itself a function of the population
P (t).

As described, the adoption of new technologies is well modeled by the logistic
model. For this reason, we will study an extension to (2) where the carrying capacity
κ(t) is modeled as a logistic, a logistic inside a logistic:

dκ(t)
dt

= ακκ(t)
(

1− κ(t)
κκ

)
. (3)

Mathematically, κ(t) is identical to the P (t) in equation (1). However, this model
(equation (3)) assumes κ(t) starts at zero, which is unrealistic for most technologies.
A new technology starts with some carrying capacity or “initial potential” that is
nonzero.

A modification to (3)

dκ(t)
dt

= ακ(κ(t)− κ1)
(

1− (κ(t)− κ1)
κ2

)
(4)

describes a logistic that increases sigmoidally between an initial value κ1 and a final
value κ2, as the analytic solution makes clear:

κ(t) = κ1 +
κ2

1 + exp (−ακ(t− tmκ))
. (5)

Here, tmκ is the midpoint (or inflection point) of the carrying capacity logistic
(equation (5)).

The advantage of this previously unstudied model is that it allows for the often
seen phenomenon of “bi-logistic” growth [12], where a growth trajectory nearing
the initial carrying capacity or ceiling starts growing again to a second, higher,
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Figure 1. Bi-logistic Growth From Logistically Increasing Carry-
ing Capacity κ(t).

carrying capacity. The rise in airplane performance with first piston engines and
then jet engines provides a familiar technological example.

A hypothetical example shows visually how our model can describe bi-logistic
growth. Figure 1 shows a generated growth trajectory P (t) for the given logistic
carrying capacity κ(t). The pulses A and B in Figure 1 were produced by the
logistic rise of κ(t) from κ1 to κ2 depicted by the solid curve labeled κ(t).

By its production of the bi-logistic as a special case, the model with a logistically
changing capacity demonstrates it is different in outcome as well as logic from
a simple logistic with a slower rate. The simplicity and clarity with which the
model generates the often seen bi-logistic growth pattern suggests its utility for
understanding the growth of populations and for abstracting and formalizing the
notion of a dynamic carrying capacity.

One challenging aspect of our model is determining the parameters that generate
a good fit with observed data. In order to specify completely our model, we must
determine the six parameters (P (0),α ,κ1, κ2, ακ, and tmκ). For the following two
empirical examples, a numerical Monte-Carlo approach was used. Specifically, a
simulated annealing method of non-linear optimization [13] was used to find the
parameters that minimized the least-squared residual error between the numeri-
cally integrated P (t) and the population data. A standard 4th-order Runge-Kutta
algorithm was used to numerically integrate the model. [14].

2. Dynamic Carrying Capacity and Human Population - A Test

In Section 1, we emphasized that exploring, inventive humanity exemplified the
lifting of carrying capacity. Through the invention and diffusion of technology,
humans alter and expand their niche and violate population forecasts. In the 1920’s,
Using a single logistic, Pearl [15] estimated the globe could support two billion
people, while today about six billion dwell here [1].

One of the greatest technological shifts was the industrial revolution, which
changed societies from primarily agrarian to manufacturing and services. The first
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Figure 2. Population of England 1541-1975. Source of Data [16].

society to do so was England. Figure 2 shows the population of England from 1541-
1975 fit with the logistic carrying capacity model (2). The early English, islanders
conceptually similar to the bacteria in a petri dish, could not directly expand their
territory to support more people. In fact, they had already cleared a large fraction
of the land for crops and animal husbandry by Roman times. English population
shows a slow rise (pulse “A”), leveling off around 5 million people (κ1) in 1650. Per-
haps sensing their local limit, the English were actively colonizing abroad during
the 17th and 18th centuries and exporting population. The population remained
rather level until nearly 1800. Meanwhile, another sigmoidal pulse (“B”) of 50 mil-
lion (κ2) had begun, bringing England close to its current population. Faster and
cheaper transport, new energy sources, and other factors made it possible for ten
times more English to eat in the same dish, at the outset in large part by exchanging
manufactured cloth for foreign grain. The model shows the hypothetical increase
in the carrying capacity κ(t) is centered in 1850 with a characteristic duration of
138 years. The parameters of the model provide a quantitative definition of the
Industrial Revolution for England and locate it precisely in time.

Japan, another space-constrained island nation, provides an even starker example
of the effects of technological change on a population (Figure 3). From the 12th
to the middle of the 19th century, Japan was primarily a feudal society, with little
industry or foreign trade. The population grew sigmoidally (from an initial base
of 5 million) to a level (κ1) of 35 million. In the latter half of the 19th century
the Meiji restoration embarked Japan on a rapid journey of industrialization and
modernization, with an explosive increase in population. Changes in agriculture,
transport, and other industries allowed Japan to provide for about 90 million more
people (κ2).

The parameters expedite a comparison of the English and Japanese Industrial
Revolutions. England crossed 1% in 1725 and 10% in 1808, while Japan crossed
1% in 1832 and 10% in 1869. The Japanese Industrial Revolution centered in
1908, almost 60 years later than the English, and had a characteristic duration
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Figure 3. Population of Japan 1100-1992. Source of Data [18, 19].

of 77 years, almost twice as steep. This steepening or shortening of the diffusion
time is consistent with numerous studies showing that technologies spread faster
in countries that begin to adopt technologies later [17]. The countries that adopt
technologies later borrow much and need to experiment less to make the system
work.

Continuing to probe the meaning of the estimates of the parameters, one must
ask what sets κ1 and κ2. Conceivably the κ1 of five million in England and thirty five
million in Japan were set by the physical limits of food. At least the history of bread
riots in Nottingham in the early nineteenth century encourages that belief. The
present limit κ2 on population in England and Japan, however, cannot conceivably
be set by food. Instead the current stabilization reflects choices about family size
as well as access to resources [20]. Nevertheless, we doubt that the Japanese or
English would again multiply by 3 or 10 as they have just done without comparably
significant technological changes that maintain or enhance the quality of life. More
generally, answering the question of future human numbers will require more than
estimates of carrying capacity.

3. Conclusion

More than a century of experience proves that the simple logistic that describes,
say, the growth of bacteria confined in a petri dish with a fixed amount of nutrition
will not fit the multiplication of humanity. We propose that logistic growth within
a dynamic carrying capacity that itself rises logistically fits better. The model
retains much of the elegance of the logistic as well as its familiar form. With this
equation to fit to and summarize the course of the inventive and exploring human
population, the task becomes one of understanding what sets and how fast and far
carrying capacity rises, and perhaps from that understanding, anticipating the new
levels.
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